Modelling and Estimation of Spacecraft
Attitude Kinematics and Kinetics

Attitude Estimation and Control

08-12-2023

Sumukh Porwal
Roll No.: ME20B041
B. Tech. Mechanical Engineering
Indian Institute of Technology Tirupati

Guide:
Dr. Yujendra Mitikiri
Department of Mechanical Engineering
Indian Institute of Technology Tirupati

WETE drefiat S el

il [

TIRUPATI

Contents

[L__Introduction|

[L.L1 System description|o e e
I1.2 System Dynamics|. oo

List of Figures

1 Triad Method with external moment, 77 = [O 0 0] Tl
2 Triad Method with external moment, 7= —Kpqy|. . -
3 Triad Method with external moment, 7 = —Kpq, — Kp(& —wema)| - - - -+ - - o o o o oo L.
4 Q Method with external moment, 7 = [O 0 O] Tl
5 Q Method with external moment, 7= —Kpgy|. oL
6 Q Method with external moment, 7= —Kpq, — Kp(W — wWemd)| -+« « « o o o v oo oo oL
7 Attitude Kalman Filter with external moment, 7 = [O 0 O] Tl
S Attitude Kalman Filter with external moment, n = —Kpq,|
9

Attitude Kalman Filter with external moment, 7 = —Kpq, — Kp(w —wema)| - -« « « - o« .

—_ =

= w NN

co oD

0 000 I3 OO

1

1.1

Introduction

System description

A satellite has the following principal-axes moments of inertia about its centre-of-mass

480 0 0
J=10 640 0 |kg—m?,
0 0 960

and is equipped with the following sensors and actuators:

thrusters that can generate moments n = [nl N9 7’1,3} r up to a maximum of 80, 80, 80 kN —m about
the satellite’s principal z, y, and z directions,

a gyroscope that can measure body-frame components of the angular velocity & up to 20 rad/s along
the z, y, and z directions with a Gaussian noise of rms 1 rad/s in each component,

a star tracker that can measure the direction h of star A if A is within 60 degrees of the body-frame +y
axis, with a Gaussian noise of rms 0.1 in each component and additionally, a uniform sampling jitter
of + 0.01 s in the line of apparent motion,

a star tracker that can measure the direction k of star B if B is within 60 degrees of the body-frame —y
axis, with a Gaussian noise of rms 0.1 in each component and additionally, a uniform sampling jitter
of + 0.01 s in the line of apparent motion,

a home-tracker that can point in the direction ¢ of the center of the Earth if the Earth is within 60
degrees of the body-frame +z axis, with a Gaussian noise of rms 0.1 in each component and additionally,
a uniform sampling jitter of +0.01 s in the line of apparent motion.

Assume the ground-frame fixed to the center of the Earth is inertial, and that the components of the mea-
sured vectors in the ground-frame are

0 0 0
h=|1|,k=|-1|,9= (0],
0 0 1
respectively.
Initial Conditions:
1
§0)=1, d= [10],
1

1.2

System Dynamics

Quaternions: the (unit-magnitude) axis, 7, and angle, ®, of rotation, are combined as a column vector ¢,
with a scalar part qg, and vector part ¢

qo
. |a| _ lao]| _ | cos®/2
1= | [cf] o {ﬁsin@ﬂ]’
q3
Al =1

= G §=cos?®/2+ A" sin*®/2 =1

5@ = [po} @ [(Jo] _ { podo — "¢]
p q Poq + Gop +p X ¢

The time derivative of a rotation quaternion is given in terms of its body-frame angular velocity and ground-

frame angular velocity x by

P O S
§=590w=X®q

2 2

The ground frame angular velocity X is given by the following relation:

X=7RJd®q

In the next step the quaternion is updated as

Qi1 =Gq+q xts

where, ts = differential time step

Quaternions must abide the unit length constraint, so the updated quaternion has to be divided by its

magnitude.

K¢

q=—
lql]

For the body frame angular velocity &, the time derivative is given by:

G =J i — (@ x J@))

where 7 = Applied Moment

From the obtained time derivative of angular velocity, the angular velocity is obtained

=0+ xts

2 Methods for Attitude Estimation

There are two major classes of attitude estimation depending upon whether we use kinematic measurements or
purely geometric measurements. We have geometric attitude estimation if all the measurements correspond to
geometric quantities, and geometro-kinematic attitude estimation if we may additionally measure the angular
velocity. We will use two geometric attitude estimators, namely Harold Black’s Vector Triad method and
Paul Davenport’s g-method, and one geometro-kinematic attitude estimator, namely the Extended Kalman

Filter applied to the attitude space.

2.1 Triad Method

Triad algorithm problem statement: Estimate the attitude matrix C from the body-frame measurements of
the components , u and v of two vectors, whose components in the ground-frame, g and h, are already known
(example, acceleration due to gravity and geo-magnetic field intensity). Construct the orthogonal triads,

ke

X — { gxh QX(QXh)} _ [l

lgl lgxhl lgx(gxh)] lg]
for the ground-frame, and

Y — [L uxv ux (uxv) } _ [L

Ju| luxv] Jux (uxv)|

for the body frame.

The estimate for the attitude matrix is,

C=Xxy"
It can be easily verified that, R
X =Y,
9 _en
g |ul
h AV
— =C—, if ulv=
Ihl vl

!

gxh ggTh—hng)]

lgxhl lgllgxh|
uXv wuTv—vuTu

|uxwv]| Jul|uxul
Th

2.2 Quest Method

g-method problem statement: Estimate the attitude quaternion ¢ from the body-frame measurements of the
components u, v, ..., of Euclidean vectors, whose components in the groundframe, g, h, ..., are already
known (example, acceleration due to gravity, geo-magnetic field intensity, sun tracker, etc), so as to minimize
the weighted quadratic error function

E(§) = alu —a|* + blv — 0|* + ...,

with measurement weights a, b, ...
where,

i=4"'®ijeq§ i=¢"0haq, ..
Define the weighted error energy function E(g§) as a function of the quaternion estimate ¢, with weight

parameters a, b, ..., summing to 1
a+b+..=

and the given measurements u, v, ..., g, h, ..., as:

E(@)=alu—§ ' ©godf +blv-q'ohod?+
=alu’+ali ' @@ - 20" (T ®g® g
+ o+ bt oh g — 20T (T @ h®§) +
= alul® + alg|* = 2a(G® ¥)" (5 @ g)
blv]? + blh|? — 2b(¢ @ 9)T (h @ §) +
=2a—2a(Gou)" (§®§)+2b—2b(@v)" (h@q) +
=2a+b+..)—2a({@a)" (0§ +b(G®)T(h®q))

The error energy functional F may be scaled by the irrelevant factor of two, negated, and shifted to the
origin, and expressed as a quadratic form in ¢:

J@)=a+b+...—FE2=al0)T (G4 +b{0) T (hed) +...
= ag” [®u]"[g®]q + bg" [@0]" [h&]G + .
=q¢"Dq (2.1)

where D is Davenport’s matrix. On account of the negation, minimizing F is equivalent to maximizing
J. But, of course, we use calculus only to extremize J(G), and then choose the solution which maximizes
(rather than minimizes) J. Expressing the cost function J in the form of is useful because it isolates the
unknown attitude estimate ¢ from the weights and measurements which are collected together in the matrix D.

Davenport’s matrix D may be simplified to

D = a[eu)" [§@] + bjev]" [hAa] +
o Wt]Jo —g¢7 0 o][0 —AT
=4l [ux]] [g [gx]} o [—v x| [n hx)| T

[uT ul [gx] vT'h vT[hx]
! . } b[vxg ng+[v>><<][h><]} T

" uxg ug” + [ux]gx]
_ [(ux g)” R (v x h)"
- |uxyg ug? + guT +ulglsys vxh vhT + hoT +0Thlsys

In order to determine the optimal attitude estimate, we use the method of Lagrange multipliers (described
in the previous subsection) to maximize the quadratic form in ([2.1)) subject to the normalization constraint
for an attitude quaternion

gqg=1

The auxilliary cost function
Ja=4"Di+AM1-q"q)

and apply the first-order optimality conditions to obtain
Jo =2G""D — 20§
= Dq¢" = \§*
The above is an eigenvalue-eigenvector equation for Davenport’s matrix D. Since D is symmetric, all eigen-
values are real. Further, since D is traceless, we will necessarily have at least one positive real root. The
value of the objective function J, at the optimal value is
Ja _ Q*TDQ* _ qA*T)\qA* =\

Thus maximizing J, is equivalent to maximizing the eigenvalue A\, and the optimal attitude estimate is
the eigenvector of Davenport’s matrix corresponding to the maximum eigenvalue.

2.3 Attitude Kalman Filter
Attitude Kalman Filter (AKF) problem statement: Given the attitude system equations,

.1 .
7= 5i®w, w=w+¢
u=q"'®g0G+ 0, v=0" ORI+ b, ...

estimate the attitude quaternion ¢ using the body-frame angular velocity measurement & , and measure-
ments of the components u, v, ..., of Euclidean vectors, whose components in the groundframe, g, h, ...,
are already known (example, acceleration due to gravity, geo-magnetic field intensity, sun tracker, etc), given
statistics E[¢] = 0, E[0] = 0, Cov(&, &) = Z, and Cov(6,0) = O for the noise in the measurements, and the
initial estimate pg, so as to minimize a quadratic residual error.

Kalman filtering (KF) is a very popular tool for treating measurement data and making good estimations
out of them. KF could be defined as an iterative algorithm, which assumes that the measurement consists of
a true value corrupted by a noise or error and in a mathematical way it makes an educated guess of which
part of the observation that is noise and which that is the closest we can get to the true value. For doing so,
the algorithm needs more information that comes partly from the knowledge on the process, in the form of
the equations of motions for example, and partly from other observations/measurements.

Important characteristics of KF is that it is a discrete process, data is sampled at intervals of time dt,
and it is recursive process, it only needs information from the actual and previous states. The process is
divided into a prediction phase, where a preliminary estimation is made, and an update phase, where obser-
vation results are incorporated.

The Kalman filter may be appropriately expanded to estimate attitude based on measurements of atti-
tude kinematics and direction.

A time step of 0.01 seconds has been taken.

Let the estimated and residual rotation at any time-step be given by the quaternion p and 7 . So,

. - . T 1
=[]«

The Kalman filter is now implemented upon the small incremental rotation 7. The linearization in the atti-
tude equations is accomplished by assuming that 7 is very nearly equal to the identity quaternion.

The predict step takes the form

Drjk—1 = Dk—1 @ Pr—1,
cos(|@—1]dt/2)
PE=1 = gin (g |dt/2) 2=t

[@r—1]

Y

Trk—1 = 1,
Ryyj—1 = Cov(Fyj—1, Fopi—1) = Ak—1Re—1A{_1 + Ex—1(dt?) /4,

where,

A1 = l3xz + [XWp—1]dt,
Ri—1 = Cov(F—1, k1),
Ep—1=Cov(&—1,&k-1)

The update/correct step takes the form

1 —[Elry x]?|

Pk = Drjk—1 @ E[Fr] = Prje—1 © { Elro.] 7

where,

U — Ug|k—1
Elryx] = (R, + Cr 07 10RO | Uk~ Vklk—1

5 Uy [—1 %]
Cp = Ok | =9 | [Prp—1x]|
(97"U7k .
Our 0

®k — 0 @v,k

Uplp—1 =]5;:‘2,1 ® g Prlk—1, -

The update/correct step is conceptually performed after the direction measurements are made available.
The estimates for the residual rotation 7, and the attitude pj after this step are also called a-posteriori
estimates, since they are computed after incorporating the information contained in direction measurements.
The covariance matrix for pi at the end of the update step is given as usual by

Ry = (R;ﬁc,l +CFO;'Cu) " = Ryt — Ripp—1CL (CrRij—1 O + ©3) ' CrRygpie—1
The covariance in the a-posteriori estimate p; is reduced with respect to the covariance of the a-priori

estimate py|x—1 since we have utilized the information contained in the direction measurements to filter out
the errors in the measurements.

3 Results and Discussion

3.1 Triad Method

The Triad algorithm, utilizing both home-tracker and star A tracker sensors, stands out for its simplicity and
real-time applicability. Its reliance on multiple sensors ensures redundancy, fostering a dependable attitude
estimation method even in scenarios with minimal external disturbances.

Limitations:

However, the algorithm may face challenges in handling sensor noise and calibration errors, potentially
impacting accuracy. In situations with limited star visibility, maintaining precision becomes more challenging
due to reduced celestial reference points.

Comparative Advantages and Disadvantages:

Compared to other methods, the Triad algorithm’s computational efficiency and suitability for real-time
processing are evident. The redundancy provided by multiple sensors enhances the system’s fault tolerance.
Despite its advantages, the Triad algorithm’s sensitivity to sensor biases and misalignments is a notable
challenge. Regular recalibration becomes essential to mitigate cumulative inaccuracies over time.

1

T AN
q1
0.5 a2 -
\ a3
k=] M | i 4 q1 (ideal)
'E 0 fi (L A i n L qa(ideal) #f
| ‘ , qs(ideal)
S0 LV
0.5 —
|
1 | \‘\J | | | | | |
0 1 2 3 4 5 6 7 8 9 10
. . . - T
Figure 1: Triad Method with external moment, 77 = [O 0 ()]
1 I i
a1
0.5 "1 G2 |
| q3
=) . qi(ideal) |,
E 0 i } Iﬂ\qulw i 3 i ' 4 (Iz(l:a'eal) g
| K «g)()qa(ldsul)
05 ! i
1 | | | | | y \
0 1 2 3 4 7 8 9 10

Figure 2: Triad Method with external moment, 7 = —Kpgq,

1 P
q1
0.5 & Esﬁ
qa
'g o | LICWRT ‘ L \h\' A b ql(l:dsul) @
g i qa(ideal)
qs(ideal)
05— lj _
1 | | \ | \ |
0 1 2 3 4 5 6 7 8 9

Figure 3: Triad Method with external moment, 7 = —Kpg, — Kp(& — Wemd)

10

3.2 Q method

The Q-method, incorporating moments proportional to the change in attitude, is characterized by improved
stability, particularly in scenarios with external disturbances. Its ability to capture sudden changes in attitude
makes it a favorable choice for applications where rapid responses are critical.

Limitations:

However, the Q-method may encounter difficulties in scenarios involving continuous rotations, potentially
overemphasizing abrupt changes while neglecting gradual variations. The reliance on moments proportional
to attitude changes introduces sensitivity to noise.

Comparative Advantages and Disadvantages:

In comparison to methods without moment consideration, the Q-method provides a more nuanced under-
standing of attitude dynamics. Its versatility in handling varying environmental conditions sets it apart.
Yet, the complexity of the Q-method and the requirement for a deep understanding of system dynamics pose
implementation challenges. Calibration and parameter tuning become critical aspects, adding to the overall
complexity.

1 AN
q
il
— 0.5 a2
o | | 9z
8 U ql(zdsal)
5 0 I ‘ qz(zdml)
z Q3(zd€al)
(o)

<]
(2]
[
r“'_)

0 1 2 3 4 5 6 7 8 10
. . - T
Figure 4: Q Method with external moment, 77 = [0 0 O]
1 \/ e 71
K‘ q
— 05 a2
a I3
8 d) q1(ideal)
5 0 i ey I i "'w‘ Jw."' ‘ ¢a(ideal)
g | g3 (2deal)
-05 - i \/ -
\J V \/
1 \ \ \ \ \ \ \ \
0 1 2 3 4 5 6 7 8 9 10
Figure 5: Q Method with external moment, 7 = —Kpgq,
1 i
q
- 0.5 a2
% L]
| ideal)
o A Lotk : by 3 i ol L
= ol o, v ™ ot g2 (ideal)
i
g ga(ideal)
-05 - ‘/
a \ \ \ \ \
0 1 2 3 4 5 6 7 8 9 10

Figure 6: Q Method with external moment, 7 = —Kpq, — Kp(& — Wemd)

3.3 Attitude Kalman Filter

The Attitude Kalman Filter (AKF), with moments proportional to both attitude changes and angular velocity,
is notable for its adaptability in dynamic scenarios. It excels in providing comprehensive attitude estimation,
incorporating both orientation and rate of change.

Limitations:

However, the AKF’s performance heavily depends on accurate knowledge of system dynamics and noise char-
acteristics. In scenarios with poorly understood dynamics, achieving optimal convergence may be challenging,
impacting attitude estimates.

Comparative Advantages and Disadvantages:

Compared to other methods, the AKF offers superior performance in scenarios with continuous and dynamic
attitude changes. Its integration of angular velocity information enhances accuracy, particularly in applica-
tions requiring precise control.

Yet, the computational demands of the AKF may limit its real-time applicability. The need for accurate
parameterization and tuning further underscores the importance of a well-understood system for optimal
performance.

1

KALMAN
(=]

|
7 8

Figure 7: Attitude Kalman Filter with external moment, 77 = [O 0 O]T

f
i
0.5 42
9z
q1(¢deal)
——— qu(edeal) g
ga(ideal)
v\
| | | | | | | |
1 2 3 4 5 6 9

10

KALMAN
o

I~
/‘ T
0.5 42
q3
/ . . a(ideal)
[go(ideal) [1]
ga(ideal)
N
| | | | | \\ |
1 2 3 4 5 9

10

1 | |
0 6 7 8
Figure 8: Attitude Kalman Filter with external moment, 7 = —Kpgq,
1 T
T
0.5~ q2
<Z(!15(-)]l
= v - g (ideal o
?(‘ 0 L i ga(ideal)
X ga(ideal)
05 \ / —
1 | | |
0 1 2 3 4 5 6 7 8 9 10
Figure 9: Attitude Kalman Filter with external moment, 7 = —Kpq, — Kp (& — Wemd)

10

11

12

13

14

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

52

53

55

56

4

Appendix

clear *; close all;
g=[0; 0; 11;
h=[0; 1; 0];
k=[0; -1; 0];

% Body moment of inertias
J=diag ([480,640,960]1) ;

7% moments
Kp=diag ([1000, 0, 1000]1);
Kd=2000;

nts

t=0:

= 1000; tf = 10; ts = tf/nts;
ts:tf;

%noise and disturbances
v_rms_sensor=0.1;
v_rms_gyro=1;

%initial conditions

q_o=
omg_

[1; 0; 0; 0];
o=[1; 10; 11;

st_o=[omg_o; q_ol;
st=zeros (7,nts+1);

st (:
omg_
omg_

,1)=st_o;
meas=zeros (3,nts+1) ;
meas (:,1)=st(1:3,1)+v_rms_gyro*randn(3,1); Y%noise

ghat_triad=zeros(4,nts+1);

ghat_qmethod=zeros (4,nts+1) ;

u_meas=zeros (3,nts+1) ;

v_meas=zeros (3,nts+1) ;

w_meas=zeros (3,nts+1) ;

n=-Kp*st(5:7,1) -Kd*(omg_meas (: ,1) -[0; 5; 0]);

% Triad method Algorithm{

for

end

i=1:nts

st_dot=zeros (7,1);

st_dot(1:3)=J"-1*%(-cross(st(1:3,1i),J*st(1:3,1i))+n);

st_dot (4:7)=1/2%[-st(5:7,1i) **st(1:3,i); st(4,i)*st(1:3,i)+cross(st(5:7,1i),st

(1:3,1))1;
st(:,i+1)=st(:,i) + st_dotx*ts;
st(4:7,i+1) = st(4:7,i+1)/norm(st(4:7,i+1)); % normalize attitude quaternion

omg_meas (:,i+1)=st(1:3,i+1)+v_rms_gyro*randn(3,1); 7 noise

C=(st(4,i)"2-st(5:7,1i) **st(5:7,i))*eye(3) + 2x(st(5:7,i)*st(5:7,1)’) + 2xst(4,i
Y*vec_cross(st(5:7,1));

u_meas (:,i)=C’*g+ v_rms_sensor*randn(3,1); 7% noise

v_meas(:,i)=C’*h+ v_rms_sensor*randn(3,1); 7% noise

w_meas (:,i)=C’*xk+ v_rms_sensor*randn(3,1); % noise

% C(attitude matrix) obtained from triad algorithm
C_triad=Triad(g,h,u_meas(:,1i),v_meas(:,1i));

% q obtained from triad algorithm
ghat_triad(:,i)= quat_from_C(C_triad);

%moment updated for next time step
n=-Kp*qhat_triad(2:4,1i)-Kd*(omg_meas (:,i)-[0; 5; 0]);

57

58

59

60

61

62

63

64

65

66

67

68

69

70

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

105

106

C=(st(4,i+1)"2-st(5:7,i+1) ’*xst(5:7,i+1))*eye(3) +2x (st (5:7,1i+1)*st(5:7,i+1)’)+2*st
(4,i+1)*vec_cross(st(5:7,i+1));

u_meas (:,i+1)=C’*g+ v_rms_sensor*randn(3,1);) noise
v_meas (:,i+1)=C’*h+ v_rms_sensor*randn(3,1); % noise
w_meas (:,i+1)=C’*k+ v_rms_sensor*randn(3,1); % noise

C_triad=Triad(g,h,u_meas(:,i+1) ,v_meas(:,i+1));
ghat_triad(:,i+1)= quat_from_C(C_triad);
Wt

%{qmethod

for i=1:nts
st_dot (1:3)=J"-1*(-cross(st(1:3,1i),J*xst(1:3,1i))+n);
st_dot(4:7)=1/2x[-st(5:7,1i) ’*st(1:3,i); st(4,i)*st(1:3,i)+cross(st(5:7,1),st

(1:3,1))1;
st(:,i+1)=st(:,i) + st_dotxts;
st(4:7,i+1) = st(4:7,i+1)/norm(st(4:7,i+1)); % normalize attitude quaternion

omg_meas (:,i+1)=st(1:3,i+1)+v_rms_gyro*randn(3,1); 7% noise

C=(st(4,1i)"2-st(5:7,1i)’*st(5:7,1i))*xeye(3) + 2x(st(5:7,1i)*st(5:7,1i)°’) + 2*st(4,i
)*vec_cross(st(5:7,1i));

u_meas (:,1)=C’*g+ v_rms_sensor*randn(3,1); J noise

v_meas (:,i)=C’*h+ v_rms_sensor*randn(3,1); J noise

w_meas (:,i)=C’*k+ v_rms_sensor*randn(3,1); % noise

% Davenport matrix

D=1/3%[0 u_meas(:,i)’; -u_meas(:,i) vec_cross(u_meas(:,i))]*[0 -g’; g vec_cross
(g)] + 1/3%[0 v_meas(:,1i)’; -v_meas(:,i) vec_cross(v_meas(:,i))]1*[0 -h’; h
vec_cross(h)] + 1/3*x[0 w_meas(:,i)’; -w_meas(:,i) vec_cross(w_meas(:,i))

J*x[0 -k’; k vec_cross(k)];

[g,A_k_1]=eig(D); % q is a matrix whose columns are eigen vectors, A is
diagonal matrix with eigen values

[, s]l=max(diag(A_k_1)); % ~ stores max value and s stores its index, diag(A)
will give [lambdal, lambda2, lambda3]

ghat_qmethod (:,i)=q(:,s)*sign(q(1l, s)); % q obtained from q_method

%moment updated for next time step
n=-Kp*qhat_qmethod (2:4,1i)-Kd*(omg_meas(:,i)-[0; 5; 0]);
end

C=(st(4,i+1)"2-st(5:7,1i+1) ’*st(5:7,i+1))*eye(3) +2*x (st (5:7,1i+1)*st(5:7,i+1)’)+2*st
(4,i+1)*vec_cross(st(5:7,i+1));

u_meas (:,i+1)=C’*g+ v_rms_sensor*randn(3,1);) noise
v_meas (:,i+1)=C’*xh+ v_rms_sensor*randn(3,1); % noise
w_meas (:,i+1)=C’*k+ v_rms_sensor*randn(3,1); % noise

D=1/3*[0 u_meas(:,i)’; -u_meas(:,i) vec_cross(u_meas(:,i))]1*[0 -g’; g vec_cross(g)]
+ 1/3*[0 v_meas(:,i)’; -v_meas(:,i) vec_cross(v_meas(:,i))]*[0 -h’; h
vec_cross(h)] + 1/3*x[0 w_meas(:,i)’; -w_meas(:,i) vec_cross(w_meas(:,i))]1*[0 -k

>, k vec_cross(k)];
[q,A_k_1]l=eig(D);
[, s]l=max(diag(A_k_1));
ghat_qmethod (:,i+1)=q(:,s)*sign(q(1l, s));
2

% {Kalman Filter
phat_k_k_1=zeros (4,nts+1);

10

129

130

132

133

135

phat_k_k_1(:,1)=q_o;

phat_k=phat_k_k_1;

r_kv=zeros (4,nts+1) ;

R_k_k_1=zeros(4,nts+1);

r_kv(l,:)=1;

uhat_k_k_1=zeros(4,nts+1);

vhat_k_k_1=zeros(4,nts+1);

what_k_k_1=zeros (4,nts+1);

R_k_1=zeros (3);

n=-Kp*q_0(2:4,1)-Kd*(omg_meas (:,1)-[0; 5; 0]);

E = v_rms_gyro~(2)*xeye(3);

Tht = v_rms_sensor ~(2)*eye(9);

for j=1:nts
st_dot (1:3)=J"-1*(-cross(st(1:3,1i),J*xst(1:3,1i))+n);
st_dot(4:7)=1/2x[-st(5:7,1i) ’*st(1:3,i); st(4,i)*st(1:3,i)+cross(st(5:7,1),st

(1:3,1))1;
st(:,i+1)=st(:,i) + st_dotxts;
st(4:7,i+1) = st(4:7,i+1)/norm(st(4:7,i+1)); % normalize attitude quaternion

omg_meas (:,i+1)=st(1:3,i+1)+v_rms_gyro*randn(3,1); 7% noise

% Predict Step:

phat_k_k_1(:,j+1)=quat_multiply(phat_k(:,j),[cos(sqrt(omg_meas(:,j) ’*omg_meas
(:,3))*ts/2); sin(sqrt(omg_meas(:,j) ’*omg_meas (:,j))*ts/2)*omg_meas (:,j)/(
sqrt (omg_meas (:,j) >*omg_meas (:,3j)))]1);

A_k_1=eye(3)+cross_vec (omg_meas (:,j))*ts;

R_k_k_1=A_k_1*R_k_1*A_k_1’+Exts"2/4;

% Update step:

uhat_k_k_1(:,j+1)=quat_multiply(quat_multiply ([phat_k_k_1(1,j+1); -phat_k_k_1
(2:4,3+1)]1,[0;g]) ,phat_k_k_1(:,j+1));

vhat_k_k_1(:,j+1)=quat_multiply(quat_multiply ([phat_k_k_1(1,j+1); -phat_k_k_1
(2:4,3+1)1,[0;h]) ,phat_k_k_1(:,j+1));

what_k_k_1(:,j+1)=quat_multiply(quat_multiply ([phat_k_k_1(1,j+1); -phat_k_k_1
(2:4,3+1)1,[0;k]) ,phat_k_k_1(:,j+1));

Ck=2*[vec_cross (uhat_k_k_1(2:4,j+1)); vec_cross(vhat_k_k_1(2:4,j+1)); vec_cross
(what_k_k_1(2:4,j+1))1];

Lk=((R_k_k_1"(-1) + Ck’*Tht"(-1)*Ck) " (-1))*Ck’*Tht~(-1);
r_kv(2:4,j+1)=Lk*[u_meas (:,j+1)-uhat_k_k_1(2:4,j+1); v_meas(:,j+1)-vhat_k_k_1
(2:4,j+1); w_meas(:,j+1)-what_k_k_1(2:4,j+1)1;

phat_k(:,j+1)=quat_multiply(phat_k_k_1(:,j+1) ,r_kv(:,j+1));

phat_k(:,j+1)=phat_k(:,j+1)/norm(phat_k(:,j+1)); ’ normalize q

n=-Kp*phat_k(2:4,j)-Kd*x(omg_meas (:,j)-[0; 5; 01);

R_k_1 = R_k_k_ 1 - R_k_k_1*Ck’*(Ck*R_k_k_1%Ck’ + Tht) " (-1)*Ck*R_k_k_1;
end

h}

% plot for triad method

subplot (3,1,1)

plot(t,qhat_triad(2:4,:))

hold on

plot(t,st(5:7,:))

hold off

grid on

ylabel (’Triad’)

legend ({’q_1’,7%$9_2%$’,7$q_3%’,’$q_1(ideal)$’,’$qg_2(ideal)$’,’$q_3(ideal)$’},
>Interpreter’, ’latex’, ’FontSize’, 10);

%plot for qmethod

11

162

163

164

166

167

168

169

171
172

173

176

177

178

180
181

182

185

186

187

189
190

191

194

195

196

198

199

200

201

203

204

205

207

208

209

210

212

213

214

subplot (3,1,2)

plot (t,ghat_qmethod (2:4,:))
hold on

plot(t,st(5:7,:))

hold off

grid omn

ylabel (’ DAVENPORT’)

legend ({’q_1’,2$9_2%°,°%q_38’,°8q_1(ideal)$’,’$q_2(ideal)$’,’$q_3(ideal)$’},

>Interpreter’, ’latex’, ’FontSize’, 10);

h}

subplot (3,1,3)

%plot for Kalman filter
plot (t,phat_k(2:4,:))
hold on
plot(t,st(5:7,:))

hold off

grid omn
ylabel (’ KALMAN)

legend ({’q_1’,°89_2%°,°%q_38’,°8q_1(ideal)$’,’$q_2(ideal)$’,’$q_3(ideal)$’},

>Interpreter’, ’latex’, ’FontSize’, 10);

function g=quat_from_C(C)

% for obtaining quaternion from C matrix
c_phi=(sum(diag(C))-1)/2;

s_phi=sqrt(l1-c_phi~2);

nx=(C-C’)/(2*xs_phi);

gvec = sqrt((1-c_phi)/2)*[nx(3,2); nx(1,3); nx(2,1)];
q=[sqrt ((c_phi+1)/2); qvecl; %

end

function v=vec_cross(a)

%for obtaining [vx] of a vector

v=[0 -a(3) a(2); a(3) 0 -a(1l); -a(2) a(1) 0];
end

function C_t=Triad(g,h,u,v)

%for obtaining the attitude matrix by triad method
X=[g/sqrt(sum(g."2)), cross(g,h)/sqrt(sum(cross(g,h)."2)),
cross(g,cross(g,h))/(sqrt(sum(g."2))*sqrt(sum(cross(g,h)."2)))1];
Y=[u/sqrt(sum(u."2)), cross(u,v)/sqrt(sum(cross(u,v)."~2)),
cross(u,cross(u,v))/(sqrt(sum(u."2))*sqrt(sum(cross(u,v)."2)))];
% attitude matrix

C_t=X*Y’;

end

function Q=quat_multiply(a,b)

%quaternion muliplication

Q=[a(1)*b(1)-a(2:4) °*b(2:4); a(1)*b(2:4)+b(1)*a(2:4)+cross(a(2:4),b(2:4))1];
end

function f=cross_vec(a)

%for obtaining [xv] of a vector

v=[0 -a(3) a(2); a(3) 0 -a(1l); -a(2) a(1) 0];
f=v’;

end

Listing 1: MATLAB code

12

	Introduction
	System description
	System Dynamics

	Methods for Attitude Estimation
	Triad Method
	Quest Method
	Attitude Kalman Filter

	Results and Discussion
	Triad Method
	Q method
	Attitude Kalman Filter

	Appendix

