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1 Introduction

1.1 System description

A satellite has the following principal-axes moments of inertia about its centre-of-mass

J =

480 0 0
0 640 0
0 0 960

 kg −m2,

and is equipped with the following sensors and actuators:

• thrusters that can generate moments n =
[
n1 n2 n3

]T
up to a maximum of 80, 80, 80 kN−m about

the satellite’s principal x, y, and z directions,

• a gyroscope that can measure body-frame components of the angular velocity ω⃗ up to 20 rad/s along
the x, y, and z directions with a Gaussian noise of rms 1 rad/s in each component,

• a star tracker that can measure the direction h⃗ of star A if A is within 60 degrees of the body-frame +y
axis, with a Gaussian noise of rms 0.1 in each component and additionally, a uniform sampling jitter
of ± 0.01 s in the line of apparent motion,

• a star tracker that can measure the direction k⃗ of star B if B is within 60 degrees of the body-frame −y
axis, with a Gaussian noise of rms 0.1 in each component and additionally, a uniform sampling jitter
of ± 0.01 s in the line of apparent motion,

• a home-tracker that can point in the direction g⃗ of the center of the Earth if the Earth is within 60
degrees of the body-frame +z axis, with a Gaussian noise of rms 0.1 in each component and additionally,
a uniform sampling jitter of ±0.01 s in the line of apparent motion.

Assume the ground-frame fixed to the center of the Earth is inertial, and that the components of the mea-
sured vectors in the ground-frame are

h =

01
0

 , k =

 0
−1
0

 , g =

00
1

 ,

respectively.

Initial Conditions:

q̌(0) = 1̌, ω⃗ =

 1
10
1

 ,

1.2 System Dynamics

Quaternions: the (unit-magnitude) axis, n⃗, and angle, Φ, of rotation, are combined as a column vector q̌,
with a scalar part q0, and vector part q⃗:

q̌ =


q0
q1
q2
q3

 =

[
q0
q⃗

]
=

[
cosΦ/2
n⃗sinΦ/2

]
,

n⃗T n⃗ = 1

=⇒ q̌T q̌ = cos2Φ/2 + n⃗T n⃗ sin2Φ/2 = 1

p̌⊗ q̌ =

[
p0
p⃗

]
⊗

[
q0
q⃗

]
=

[
p0q0 − p⃗T q⃗

p0q⃗ + q0p⃗+ p⃗× q⃗

]
q̌−1 =

[
q0
−q⃗

]
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The time derivative of a rotation quaternion is given in terms of its body-frame angular velocity and ground-
frame angular velocity χ⃗ by

˙̌q =
1

2
q̌ ⊗ ω⃗ =

1

2
χ⃗⊗ q̌

The ground frame angular velocity χ⃗ is given by the following relation:

χ⃗ = q̌ ⊗ ω⃗ ⊗ q̌−1

In the next step the quaternion is updated as

q̌t+1 = q̌t + ˙̌q × ts

where, ts = differential time step

Quaternions must abide the unit length constraint, so the updated quaternion has to be divided by its
magnitude.

q̌ =
q̌

||q̌||
For the body frame angular velocity ω⃗, the time derivative is given by:

˙⃗ω = J−1(n⃗− (ω⃗ × Jω⃗))

where n⃗ = Applied Moment

From the obtained time derivative of angular velocity, the angular velocity is obtained

ω⃗ = ω⃗ + ˙⃗ω × ts

2 Methods for Attitude Estimation

There are two major classes of attitude estimation depending upon whether we use kinematic measurements or
purely geometric measurements. We have geometric attitude estimation if all the measurements correspond to
geometric quantities, and geometro-kinematic attitude estimation if we may additionally measure the angular
velocity. We will use two geometric attitude estimators, namely Harold Black’s Vector Triad method and
Paul Davenport’s q-method, and one geometro-kinematic attitude estimator, namely the Extended Kalman
Filter applied to the attitude space.

2.1 Triad Method

Triad algorithm problem statement: Estimate the attitude matrix Ĉ from the body-frame measurements of
the components , u and v of two vectors, whose components in the ground-frame, g and h, are already known
(example, acceleration due to gravity and geo-magnetic field intensity). Construct the orthogonal triads,

X =
[

g
|g|

g×h
|g×h|

g×(g×h)
|g×(g×h)|

]
=

[
g
|g|

g×h
|g×h|

ggTh−hgT g)
|g||g×h|

]
for the ground-frame, and

Y =
[

u
|u|

u×v
|u×v|

u×(u×v)
|u×(u×v)|

]
,=

[
u
|u|

u×v
|u×v|

uuT v−vuTu)
|u||u×u|

]
for the body frame.

The estimate for the attitude matrix is,
Ĉ = XY T

It can be easily verified that,
X = ĈY,
g

|g|
= Ĉ

u

|u|
,

h

|h|
= Ĉ

v

|v|
, if uT v = gTh
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2.2 Quest Method

q-method problem statement: Estimate the attitude quaternion q̌ from the body-frame measurements of the
components u, v, . . . , of Euclidean vectors, whose components in the groundframe, g, h, . . . , are already
known (example, acceleration due to gravity, geo-magnetic field intensity, sun tracker, etc), so as to minimize
the weighted quadratic error function

E(q̌) = a|u− û|2 + b|v − v̂|2 + ...,

with measurement weights a, b, ...
where,

û = q̂−1 ⊗ ǧ ⊗ q̂, v̂ = q̂−1 ⊗ ȟ⊗ q̂, ...

Define the weighted error energy function E(q̌) as a function of the quaternion estimate q̌, with weight
parameters a, b, ..., summing to 1

a+ b+ ... = 1

and the given measurements u, v, ..., g, h, ..., as:

E(q̌) = a|u− q̂−1 ⊗ ǧ ⊗ q̂|2 + b|v − q̂−1 ⊗ ȟ⊗ q̂|2 + . . .

= a|u|2 + a|q̂−1 ⊗ ǧ ⊗ q̂|2 − 2auT (q̂−1 ⊗ ǧ ⊗ q̂)

+ b|v|2 + b|q̂−1 ⊗ ȟ⊗ q̂|2 − 2bvT (q̂−1 ⊗ ȟ⊗ q̂) + . . .

= a|u|2 + a|g|2 − 2a(q̂ ⊗ ǔ)T (ǧ ⊗ q̂)

b|v|2 + b|h|2 − 2b(q̂ ⊗ v̌)T (ȟ⊗ q̂) + . . .

= 2a− 2a(q̂ ⊗ ǔ)T (ǧ ⊗ q̂) + 2b− 2b(q̂ ⊗ v̌)T (ȟ⊗ q̂) + . . .

= 2(a+ b+ . . .)− 2(a(q̂ ⊗ ǔ)T (ǧ ⊗ q̂) + b(q̂ ⊗ v̌)T (ȟ⊗ q̂) + . . .)

The error energy functional E may be scaled by the irrelevant factor of two, negated, and shifted to the
origin, and expressed as a quadratic form in q̂:

J(q̂) = a+ b+ . . .− E/2 = a(q̂ ⊗ ǔ)T (ǧ ⊗ q̂) + b(q̂ ⊗ v̌)T (ȟ⊗ q̂) + . . .

= aq̂T [⊗ǔ]T [ǧ⊗]q̂ + bq̂T [⊗v̌]T [ȟ⊗]q̂ + . . .

= q̂TDq̂ (2.1)

where D is Davenport’s matrix. On account of the negation, minimizing E is equivalent to maximizing
J . But, of course, we use calculus only to extremize J(q̂), and then choose the solution which maximizes
(rather than minimizes) J . Expressing the cost function J in the form of (2.1) is useful because it isolates the
unknown attitude estimate q̂ from the weights and measurements which are collected together in the matrixD.

Davenport’s matrix D may be simplified to

D = a[⊗ǔ]T [ǧ⊗] + b[⊗v̌]T [ȟ⊗] + . . .

= a

[
0 uT

−u [u×]

] [
0 −gT

g [g×]

]
+ b

[
0 vT

−v [v×]

] [
0 −hT

h [h×]

]
+ . . .

= a

[
uT g uT [g×]
u× g ugT + [u×][g×]

]
+ b

[
vTh vT [h×]
v × g vgT + [v×][h×]

]
+ . . .

= a

[
uT g (u× g)T

u× g ugT + guT + uT g13×3

]
+ b

[
vT g (v × h)T

v × h vhT + hvT + vTh13×3

]
+ . . .

In order to determine the optimal attitude estimate, we use the method of Lagrange multipliers (described
in the previous subsection) to maximize the quadratic form in (2.1) subject to the normalization constraint
for an attitude quaternion

q̂T q̂ = 1

The auxilliary cost function
Ja = q̂TDq̂ + λ(1− q̂T q̂)
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and apply the first-order optimality conditions to obtain

Ja = 2q̂∗TD − 2λq̂∗T

=⇒ Dq̂∗ = λq̂∗

The above is an eigenvalue-eigenvector equation for Davenport’s matrix D. Since D is symmetric, all eigen-
values are real. Further, since D is traceless, we will necessarily have at least one positive real root. The
value of the objective function Ja at the optimal value is

Ja = q̂∗TDq̂∗ = q̂∗Tλq̂∗ = λ

Thus maximizing Ja is equivalent to maximizing the eigenvalue λ, and the optimal attitude estimate is
the eigenvector of Davenport’s matrix corresponding to the maximum eigenvalue.

2.3 Attitude Kalman Filter

Attitude Kalman Filter (AKF) problem statement: Given the attitude system equations,

˙̌q =
1

2
q̌ ⊗ ω, ω̂ = ω + ξ

u = q̂−1 ⊗ g ⊗ q̂ + θu, v = q̂−1 ⊗ h⊗ q̂ + θv, . . .

estimate the attitude quaternion q̌ using the body-frame angular velocity measurement ω̂ , and measure-
ments of the components u, v, . . . , of Euclidean vectors, whose components in the groundframe, g, h, . . .,
are already known (example, acceleration due to gravity, geo-magnetic field intensity, sun tracker, etc), given
statistics E[ξ] = 0, E[θ] = 0, Cov(ξ, ξ) = Ξ, and Cov(θ, θ) = Θ for the noise in the measurements, and the
initial estimate p̌0, so as to minimize a quadratic residual error.

Kalman filtering (KF) is a very popular tool for treating measurement data and making good estimations
out of them. KF could be defined as an iterative algorithm, which assumes that the measurement consists of
a true value corrupted by a noise or error and in a mathematical way it makes an educated guess of which
part of the observation that is noise and which that is the closest we can get to the true value. For doing so,
the algorithm needs more information that comes partly from the knowledge on the process, in the form of
the equations of motions for example, and partly from other observations/measurements.

Important characteristics of KF is that it is a discrete process, data is sampled at intervals of time δt,
and it is recursive process, it only needs information from the actual and previous states. The process is
divided into a prediction phase, where a preliminary estimation is made, and an update phase, where obser-
vation results are incorporated.

The Kalman filter may be appropriately expanded to estimate attitude based on measurements of atti-
tude kinematics and direction.

A time step of 0.01 seconds has been taken.

Let the estimated and residual rotation at any time-step be given by the quaternion p̌ and ř . So,

ř = p̌−1 ⊗ q̌ =

[
r0
r⃗

]
≈

[
1
r⃗

]
The Kalman filter is now implemented upon the small incremental rotation ř. The linearization in the atti-
tude equations is accomplished by assuming that ř is very nearly equal to the identity quaternion.

The predict step takes the form

p̌k|k−1 = p̌k−1 ⊗ φ̌k−1,

φ̌k−1 =

[
cos(|ω̂k−1|dt/2)

sin(|ω̂k−1|dt/2) ω̂k−1

|ω̂k−1|

]
,

řk|k−1 = 1̌,

Rk|k−1 = Cov(r⃗k|k−1, r⃗k|k−1) = Ak−1Rk−1A
T
k−1 + Ξk−1(dt

2)/4,
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where,

Ak−1 = 13×3 + [×ω̂k−1]dt,

Rk−1 = Cov(r⃗k−1, r⃗k−1),

Ξk−1 = Cov(ξk−1, ξk−1)

The update/correct step takes the form

p̌k = p̌k|k−1 ⊗ E[řk] = p̌k|k−1 ⊗
[√

1− |E[rv,k]2|
E[rv,k]

]
,

where,

E[rv,k] = (R−1
k|k−1 + CT

k Θ
−1
k Ck)C

T
k Θ

−1
k

uk − ûk|k−1

vk − v̂k|k−1

...


Ck =

∂

∂rv,k

ûk

v̂k
...

 = 2

[ûk|k−1×]
[v̂k|k−1×]

...

 ,

Θk =

Θu,k 0 . . .
0 Θv,k . . .
...

...
. . .

 ,

ûk|k−1 = p̌−1
k|k−1 ⊗ g ⊗ p̌k|k−1, . . .

The update/correct step is conceptually performed after the direction measurements are made available.
The estimates for the residual rotation řk and the attitude p̂k after this step are also called a-posteriori
estimates, since they are computed after incorporating the information contained in direction measurements.
The covariance matrix for p̂k at the end of the update step is given as usual by

Rk = (R−1
k|k−1 + CT

k Θ
−1
k Ck)

−1 = Rk|k−1 −Rk|k−1C
T
k (CkRk|k−1C

T
k +Θk)

−1CkRk|k−1

The covariance in the a-posteriori estimate p̂k is reduced with respect to the covariance of the a-priori
estimate p̂k|k−1 since we have utilized the information contained in the direction measurements to filter out
the errors in the measurements.
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3 Results and Discussion

3.1 Triad Method

The Triad algorithm, utilizing both home-tracker and star A tracker sensors, stands out for its simplicity and
real-time applicability. Its reliance on multiple sensors ensures redundancy, fostering a dependable attitude
estimation method even in scenarios with minimal external disturbances.
Limitations:
However, the algorithm may face challenges in handling sensor noise and calibration errors, potentially
impacting accuracy. In situations with limited star visibility, maintaining precision becomes more challenging
due to reduced celestial reference points.
Comparative Advantages and Disadvantages:
Compared to other methods, the Triad algorithm’s computational efficiency and suitability for real-time
processing are evident. The redundancy provided by multiple sensors enhances the system’s fault tolerance.
Despite its advantages, the Triad algorithm’s sensitivity to sensor biases and misalignments is a notable
challenge. Regular recalibration becomes essential to mitigate cumulative inaccuracies over time.

Figure 1: Triad Method with external moment, n⃗ =
[
0 0 0

]T

Figure 2: Triad Method with external moment, n⃗ = −KP qv

Figure 3: Triad Method with external moment, n⃗ = −KP qv −KD(ω̂ − ωcmd)

6



3.2 Q method

The Q-method, incorporating moments proportional to the change in attitude, is characterized by improved
stability, particularly in scenarios with external disturbances. Its ability to capture sudden changes in attitude
makes it a favorable choice for applications where rapid responses are critical.
Limitations:
However, the Q-method may encounter difficulties in scenarios involving continuous rotations, potentially
overemphasizing abrupt changes while neglecting gradual variations. The reliance on moments proportional
to attitude changes introduces sensitivity to noise.
Comparative Advantages and Disadvantages:
In comparison to methods without moment consideration, the Q-method provides a more nuanced under-
standing of attitude dynamics. Its versatility in handling varying environmental conditions sets it apart.
Yet, the complexity of the Q-method and the requirement for a deep understanding of system dynamics pose
implementation challenges. Calibration and parameter tuning become critical aspects, adding to the overall
complexity.

Figure 4: Q Method with external moment, n⃗ =
[
0 0 0

]T

Figure 5: Q Method with external moment, n⃗ = −KP qv

Figure 6: Q Method with external moment, n⃗ = −KP qv −KD(ω̂ − ωcmd)
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3.3 Attitude Kalman Filter

The Attitude Kalman Filter (AKF), with moments proportional to both attitude changes and angular velocity,
is notable for its adaptability in dynamic scenarios. It excels in providing comprehensive attitude estimation,
incorporating both orientation and rate of change.
Limitations:
However, the AKF’s performance heavily depends on accurate knowledge of system dynamics and noise char-
acteristics. In scenarios with poorly understood dynamics, achieving optimal convergence may be challenging,
impacting attitude estimates.
Comparative Advantages and Disadvantages:
Compared to other methods, the AKF offers superior performance in scenarios with continuous and dynamic
attitude changes. Its integration of angular velocity information enhances accuracy, particularly in applica-
tions requiring precise control.
Yet, the computational demands of the AKF may limit its real-time applicability. The need for accurate
parameterization and tuning further underscores the importance of a well-understood system for optimal
performance.

Figure 7: Attitude Kalman Filter with external moment, n⃗ =
[
0 0 0

]T

Figure 8: Attitude Kalman Filter with external moment, n⃗ = −KP qv

Figure 9: Attitude Kalman Filter with external moment, n⃗ = −KP qv −KD(ω̂ − ωcmd)
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4 Appendix

1 clear *; close all;

2 g=[0; 0; 1];

3 h=[0; 1; 0];

4 k=[0; -1; 0];

5

6 % Body moment of inertias

7 J=diag ([480 ,640 ,960]);

8

9 % moments

10 Kp=diag ([1000 , 0, 1000]);

11 Kd =2000;

12

13 nts = 1000; tf = 10; ts = tf/nts;

14 t=0:ts:tf;

15

16 %noise and disturbances

17 v_rms_sensor =0.1;

18 v_rms_gyro =1;

19

20 %initial conditions

21 q_o =[1; 0; 0; 0];

22 omg_o =[1; 10; 1];

23 st_o=[ omg_o; q_o];

24 st=zeros(7,nts +1);

25 st(:,1)=st_o;

26 omg_meas=zeros(3,nts+1);

27 omg_meas (:,1)=st(1:3 ,1)+v_rms_gyro*randn (3,1); %noise

28 qhat_triad=zeros(4,nts+1);

29 qhat_qmethod=zeros(4,nts +1);

30 u_meas=zeros(3,nts +1);

31 v_meas=zeros(3,nts +1);

32 w_meas=zeros(3,nts +1);

33 n=-Kp*st(5:7 ,1)-Kd*( omg_meas (:,1) -[0; 5; 0]);

34

35 % Triad method Algorithm{

36 for i=1:nts

37 st_dot=zeros (7,1);

38 st_dot (1:3)=J^-1*(-cross(st(1:3,i),J*st(1:3,i))+n);

39 st_dot (4:7) =1/2*[ -st(5:7,i) ’*st(1:3,i); st(4,i)*st(1:3,i)+cross(st(5:7,i),st

(1:3,i))];

40 st(:,i+1)=st(:,i) + st_dot*ts;

41 st(4:7,i+1) = st(4:7,i+1)/norm(st(4:7,i+1)); % normalize attitude quaternion

42 omg_meas(:,i+1)=st(1:3,i+1)+v_rms_gyro*randn (3,1); % noise

43 C=(st(4,i)^2-st(5:7,i)’*st(5:7,i))*eye(3) + 2*(st(5:7,i)*st(5:7,i)’) + 2*st(4,i

)*vec_cross(st(5:7,i));

44 u_meas(:,i)=C’*g+ v_rms_sensor*randn (3,1); % noise

45 v_meas(:,i)=C’*h+ v_rms_sensor*randn (3,1); % noise

46 w_meas(:,i)=C’*k+ v_rms_sensor*randn (3,1); % noise

47

48 % C(attitude matrix) obtained from triad algorithm

49 C_triad=Triad(g,h,u_meas(:,i),v_meas(:,i));

50

51 % q obtained from triad algorithm

52 qhat_triad (:,i)= quat_from_C(C_triad);

53

54 %moment updated for next time step

55 n=-Kp*qhat_triad (2:4,i)-Kd*( omg_meas(:,i) -[0; 5; 0]);

56 end
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57 C=(st(4,i+1)^2-st(5:7,i+1) ’*st(5:7,i+1))*eye(3) +2*(st(5:7,i+1)*st(5:7,i+1) ’)+2*st

(4,i+1)*vec_cross(st(5:7,i+1));

58

59 u_meas(:,i+1)=C’*g+ v_rms_sensor*randn (3,1); % noise

60 v_meas(:,i+1)=C’*h+ v_rms_sensor*randn (3,1); % noise

61 w_meas(:,i+1)=C’*k+ v_rms_sensor*randn (3,1); % noise

62

63 C_triad=Triad(g,h,u_meas(:,i+1),v_meas(:,i+1));

64 qhat_triad (:,i+1)= quat_from_C(C_triad);

65 %}

66

67 %{qmethod

68 for i=1:nts

69 st_dot (1:3)=J^-1*(-cross(st(1:3,i),J*st(1:3,i))+n);

70 st_dot (4:7) =1/2*[ -st(5:7,i) ’*st(1:3,i); st(4,i)*st(1:3,i)+cross(st(5:7,i),st

(1:3,i))];

71 st(:,i+1)=st(:,i) + st_dot*ts;

72 st(4:7,i+1) = st(4:7,i+1)/norm(st(4:7,i+1)); % normalize attitude quaternion

73

74 omg_meas(:,i+1)=st(1:3,i+1)+v_rms_gyro*randn (3,1); % noise

75

76 C=(st(4,i)^2-st(5:7,i)’*st(5:7,i))*eye(3) + 2*(st(5:7,i)*st(5:7,i)’) + 2*st(4,i

)*vec_cross(st(5:7,i));

77 u_meas(:,i)=C’*g+ v_rms_sensor*randn (3,1); % noise

78 v_meas(:,i)=C’*h+ v_rms_sensor*randn (3,1); % noise

79 w_meas(:,i)=C’*k+ v_rms_sensor*randn (3,1); % noise

80

81 % Davenport matrix

82 D=1/3*[0 u_meas(:,i)’; -u_meas(:,i) vec_cross(u_meas(:,i))]*[0 -g’; g vec_cross

(g)] + 1/3*[0 v_meas(:,i)’; -v_meas(:,i) vec_cross(v_meas(:,i))]*[0 -h’; h

vec_cross(h)] + 1/3*[0 w_meas(:,i)’; -w_meas(:,i) vec_cross(w_meas(:,i))

]*[0 -k’; k vec_cross(k)];

83

84 [q,A_k_1]=eig(D); % q is a matrix whose columns are eigen vectors , A is

diagonal matrix with eigen values

85 [~, s]=max(diag(A_k_1)); % ~ stores max value and s stores its index , diag(A)

will give [lambda1 , lambda2 , lambda3]

86

87 qhat_qmethod (:,i)=q(:,s)*sign(q(1, s)); % q obtained from q_method

88

89 %moment updated for next time step

90 n=-Kp*qhat_qmethod (2:4,i)-Kd*( omg_meas(:,i) -[0; 5; 0]);

91 end

92

93 C=(st(4,i+1)^2-st(5:7,i+1) ’*st(5:7,i+1))*eye(3) +2*(st(5:7,i+1)*st(5:7,i+1) ’)+2*st

(4,i+1)*vec_cross(st(5:7,i+1));

94

95 u_meas(:,i+1)=C’*g+ v_rms_sensor*randn (3,1); % noise

96 v_meas(:,i+1)=C’*h+ v_rms_sensor*randn (3,1); % noise

97 w_meas(:,i+1)=C’*k+ v_rms_sensor*randn (3,1); % noise

98

99 D=1/3*[0 u_meas(:,i)’; -u_meas(:,i) vec_cross(u_meas(:,i))]*[0 -g’; g vec_cross(g)]

+ 1/3*[0 v_meas(:,i)’; -v_meas(:,i) vec_cross(v_meas(:,i))]*[0 -h’; h

vec_cross(h)] + 1/3*[0 w_meas(:,i)’; -w_meas(:,i) vec_cross(w_meas(:,i))]*[0 -k

’; k vec_cross(k)];

100 [q,A_k_1]=eig(D);

101 [~, s]=max(diag(A_k_1));

102 qhat_qmethod (:,i+1)=q(:,s)*sign(q(1, s));

103 %}

104

105 % {Kalman Filter

106 phat_k_k_1=zeros(4,nts+1);
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107 phat_k_k_1 (:,1)=q_o;

108 phat_k=phat_k_k_1;

109 r_kv=zeros(4,nts +1);

110 R_k_k_1=zeros(4,nts +1);

111 r_kv (1,:)=1;

112 uhat_k_k_1=zeros(4,nts+1);

113 vhat_k_k_1=zeros(4,nts+1);

114 what_k_k_1=zeros(4,nts+1);

115 R_k_1=zeros (3);

116 n=-Kp*q_o (2:4 ,1)-Kd*( omg_meas (:,1 ) -[0; 5; 0]);

117 E = v_rms_gyro ^(2)*eye(3);

118 Tht = v_rms_sensor ^(2)*eye (9);

119 for j=1:nts

120 st_dot (1:3)=J^-1*(-cross(st(1:3,i),J*st(1:3,i))+n);

121 st_dot (4:7) =1/2*[ -st(5:7,i) ’*st(1:3,i); st(4,i)*st(1:3,i)+cross(st(5:7,i),st

(1:3,i))];

122 st(:,i+1)=st(:,i) + st_dot*ts;

123 st(4:7,i+1) = st(4:7,i+1)/norm(st(4:7,i+1)); % normalize attitude quaternion

124

125 omg_meas(:,i+1)=st(1:3,i+1)+v_rms_gyro*randn (3,1); % noise

126

127 % Predict Step:

128 phat_k_k_1 (:,j+1)=quat_multiply(phat_k(:,j),[cos(sqrt(omg_meas(:,j)’*omg_meas

(:,j))*ts/2); sin(sqrt(omg_meas(:,j) ’*omg_meas(:,j))*ts/2)*omg_meas(:,j)/(

sqrt(omg_meas(:,j) ’*omg_meas(:,j)))]);

129 A_k_1=eye(3)+cross_vec(omg_meas(:,j))*ts;

130 R_k_k_1=A_k_1*R_k_1*A_k_1 ’+E*ts ^2/4;

131

132 % Update step:

133 uhat_k_k_1 (:,j+1)=quat_multiply(quat_multiply ([ phat_k_k_1 (1,j+1); -phat_k_k_1

(2:4,j+1)],[0;g]),phat_k_k_1 (:,j+1));

134 vhat_k_k_1 (:,j+1)=quat_multiply(quat_multiply ([ phat_k_k_1 (1,j+1); -phat_k_k_1

(2:4,j+1)],[0;h]),phat_k_k_1 (:,j+1));

135 what_k_k_1 (:,j+1)=quat_multiply(quat_multiply ([ phat_k_k_1 (1,j+1); -phat_k_k_1

(2:4,j+1)],[0;k]),phat_k_k_1 (:,j+1));

136

137 Ck=2*[ vec_cross(uhat_k_k_1 (2:4,j+1)); vec_cross(vhat_k_k_1 (2:4,j+1)); vec_cross

(what_k_k_1 (2:4,j+1))];

138

139 Lk=(( R_k_k_1 ^(-1) + Ck ’*Tht^(-1)*Ck)^(-1))*Ck ’*Tht^(-1);

140 r_kv (2:4,j+1)=Lk*[ u_meas(:,j+1)-uhat_k_k_1 (2:4,j+1); v_meas(:,j+1)-vhat_k_k_1

(2:4,j+1); w_meas(:,j+1)-what_k_k_1 (2:4,j+1)];

141

142 phat_k(:,j+1)=quat_multiply(phat_k_k_1 (:,j+1),r_kv(:,j+1));

143 phat_k(:,j+1)=phat_k(:,j+1)/norm(phat_k(:,j+1)); % normalize q

144 n=-Kp*phat_k (2:4,j)-Kd*( omg_meas(:,j) -[0; 5; 0]);

145 R_k_1 = R_k_k_1 - R_k_k_1*Ck ’*(Ck*R_k_k_1*Ck ’ + Tht)^(-1)*Ck*R_k_k_1;

146 end

147 %}

148

149 % plot for triad method

150 subplot (3,1,1)

151 plot(t,qhat_triad (2:4 ,:))

152 hold on

153 plot(t,st(5:7 ,:))

154 hold off

155 grid on

156 ylabel(’Triad ’)

157 legend ({’$q_1$ ’,’$q_2$’,’$q_3$ ’,’$q_1(ideal)$’,’$q_2(ideal)$’,’$q_3(ideal)$’}, ...

158 ’Interpreter ’, ’latex ’, ’FontSize ’, 10);

159

160 %plot for qmethod
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161 subplot (3,1,2)

162 plot(t,qhat_qmethod (2:4 ,:))

163 hold on

164 plot(t,st(5:7 ,:))

165 hold off

166 grid on

167 ylabel(’DAVENPORT ’)

168 legend ({’$q_1$ ’,’$q_2$’,’$q_3$ ’,’$q_1(ideal)$’,’$q_2(ideal)$’,’$q_3(ideal)$’}, ...

169 ’Interpreter ’, ’latex ’, ’FontSize ’, 10);

170 %}

171

172 subplot (3,1,3)

173 %plot for Kalman filter

174 plot(t,phat_k (2:4 ,:))

175 hold on

176 plot(t,st(5:7 ,:))

177 hold off

178 grid on

179 ylabel(’KALMAN ’)

180 legend ({’$q_1$ ’,’$q_2$’,’$q_3$ ’,’$q_1(ideal)$’,’$q_2(ideal)$’,’$q_3(ideal)$’}, ...

181 ’Interpreter ’, ’latex ’, ’FontSize ’, 10);

182

183 function q=quat_from_C(C)

184 % for obtaining quaternion from C matrix

185 c_phi=(sum(diag(C)) -1)/2;

186 s_phi=sqrt(1-c_phi ^2);

187 nx=(C-C’)/(2* s_phi);

188 qvec = sqrt((1-c_phi)/2)*[nx(3,2); nx(1,3); nx(2,1)];

189 q=[sqrt(( c_phi +1)/2); qvec]; %

190 end

191

192 function v=vec_cross(a)

193 %for obtaining [vx] of a vector

194 v=[0 -a(3) a(2); a(3) 0 -a(1); -a(2) a(1) 0];

195 end

196

197 function C_t=Triad(g,h,u,v)

198 %for obtaining the attitude matrix by triad method

199 X=[g/sqrt(sum(g.^2)), cross(g,h)/sqrt(sum(cross(g,h).^2)), ...

200 cross(g,cross(g,h))/(sqrt(sum(g.^2))*sqrt(sum(cross(g,h).^2)))];

201 Y=[u/sqrt(sum(u.^2)), cross(u,v)/sqrt(sum(cross(u,v).^2)), ...

202 cross(u,cross(u,v))/(sqrt(sum(u.^2))*sqrt(sum(cross(u,v).^2)))];

203 % attitude matrix

204 C_t=X*Y’;

205 end

206

207 function Q=quat_multiply(a,b)

208 %quaternion muliplication

209 Q=[a(1)*b(1)-a(2:4) ’*b(2:4); a(1)*b(2:4)+b(1)*a(2:4)+cross(a(2:4),b(2:4))];

210 end

211

212 function f=cross_vec(a)

213 %for obtaining [xv] of a vector

214 v=[0 -a(3) a(2); a(3) 0 -a(1); -a(2) a(1) 0];

215 f=v’;

216 end

Listing 1: MATLAB code
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