MyAutoPano
RBES549 Project 1

Piyush Thapar, Sumukh Porwal
MS Robotics Engineering
Worcester Polytechnic Institute
Email: pthapar@wpi.edu, sporwal @wpi.edu

Abstract—This report presents an analysis of homography
estimation techniques, focusing on traditional feature-matching
methods for computing homography between image pairs. It
explores the mathematical foundations, implementation details,
and evaluation of these approaches, providing insights into their
effectiveness in different scenarios.

I. PHASE 1: TRADITIONAL APPROACH

In this phase, a traditional approach is employed for the
panorama stitching process, which follows a series of sequen-
tial steps. A comprehensive illustration of this methodology is
provided in Figure [I]

o Corner Detection: Identifying key points in the images,
which serve as the basis for stitching.

« Adaptive Non-Maximal Suppression (ANMS): Select-
ing a set of strong and evenly distributed corners.

« Feature Descriptor: Encoding the characteristics of each
corner for matching.

« Feature Matching: Establishing correspondences be-
tween corners across images.

« RANSAC: Removing incorrect matches and estimating a
robust transformation (Homography).

« Blending Images: Aligning and merging images seam-
lessly into a panorama.

The resulting output of corner detection highlights numer-
ous potential corner points. The subsequent step, ANMS,
refines these results to retain only the strongest and well-
distributed corners.
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Fig. 2. Corner Detection

B. Adaptive Non-Maximal Suppression (ANMS)

This step ensures that the selected corners are evenly
distributed throughout the image, minimizing distortions dur-
ing image warping. Since many strong corners may cluster
together, ANMS filters them to retain only the most spatially
diverse Nyes corners. This prevents artifacts that could degrade
the panorama quality.

The ANMS algorithm is described below in detail:

Algorithm 1 Adaptive Non-Maximal Suppression (ANMS)
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Fig. 1. Overview of Panorama Stitching using the Traditional Method
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A. Corner Detection

The initial step in creating a panorama involves identifying
corners, a crucial step in most computer vision tasks. For
this project, Harris corners are utilized, implemented using
cv2.cornerHarris. Corners represent regions in the im-
age with significant variations in intensity in all directions.

Require: Cj,,: Corner score image, Npeyi: Number of re-
quired corners.
Ensure: (z;,y;) for i = 1 : Npey
1: Identify all local maxima in
maximum_filter from scipy.

Cimg

using

2: Retrieve (x,y) coordinates of these local maxima.

3: Initialize r; = oo for each strong corner <.

4: for i =1 : Nyyong do

5: for j =1 : Nyyone do

6: if Cimg(yj; x]—) > Cimg(yia l’l) then

7: Compute Euclidean distance: ED = (z; —
zi)® + (y; — vi)*.

8: if ED <r; then

9: Update r; = ED.
10: Sort corners by 7; in descending order and select the top
Nbest~




The output of ANMS demonstrates a more uniform and
spatially balanced set of corners compared to raw corner
detection results.
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Fig. 3. ANMS with 1000 Best Points

C. Feature Descriptor

After identifying feature points through ANMS, each point
is described by a feature vector that encodes local image
characteristics. For this process:

o A patch of size 41 x 41 is extracted around each feature

point.

e Gaussian blur (cv2.GaussianBlur) with kernel size

(5,5) is applied to smooth the patch.

o The smoothed patch is subsampled to 8 x 8 and reshaped

into a 64 x 1 vector.

o This vector is standardized to have zero mean and unit

variance, improving robustness to illumination changes.
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Fig. 4. Feature Descriptors

D. Feature Matching

With the feature descriptors calculated, corresponding points

between two images are matched:

o For each feature in image 1, the sum of squared differ-
ences (SSD) is computed with all features in image 2.

o The ratio of the best match to the second-best match is
evaluated. Matches with a ratio below a threshold are
retained as confident correspondences.

« This process reduces mismatches, ensuring reliable points
for Homography estimation.

E. RANSAC for Outlier Rejection and Robust Homography
Estimation

Even with feature matching, some correspondences may still
be incorrect. To address this, the RANSAC algorithm is used
to robustly estimate the Homography matrix, rejecting outliers:

Fig. 5. Feature Matching

Algorithm 2 RANSAC (RANdom SAmple Consensus)
Require: Ny.x: Maximum iterations, 7: Threshold for inliers,
p;: Points from Image 1, p.: Points from Image 2.
Ensure: H: Homography matrix.
1: while iterations < Ny, and percentage of inliers < 90%
do
Randomly sample four point pairs (p;, p}).
Compute homography H using the sampled pairs.
Determine inliers satisfying SSD(p}, H - p;) < 7.
Increment iterations.
: Retain the largest set of inliers and recompute H using
least-squares.
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Fig. 6. Inliers after RANSAC

F. Blending Images

The final panorama is created by aligning and merging the
images:
o Compute the bounds of the resulting panorama using the
warped image corners.
« Apply a translation matrix to ensure all content fits within
the frame.



o Merge the aligned images to produce the seamless

panorama.

To Improve blending between the common region of im-
ages, we computed weighted masks for each image separately.
These masks were normalized to have values between 0 and
1. The final blended image was obtained by taking a weighted
sum of the two images, where each pixel’s contribution was
determined by its corresponding weight in the mask. This
approach ensures that overlapping regions blend smoothly,
reducing artifacts and visible seams.

Fig. 7. Blended Images

G. Multiple Image Stitching

For horizontal image stitching involving multiple images,
we ensure that the images are ordered optimally based on
their matching features. To determine the best stitching order,
we use the following algorithm:

1) Finding Best Matching Pairs: Each pair of images is
analyzed to find the number of good feature matches.
Corner detection and feature extraction are performed us-
ing methods such as Adaptive Non-Maximal Suppression
(ANMS) and feature descriptors. Matches are calculated
for all pairs, and the results are sorted in descending order
based on the number of matches.

2) Creating a Panorama Graph: A graph is constructed
where each image represents a node, and edges between
nodes represent feature matches. The weight of each edge
corresponds to the number of matches between the two
images, enabling a structured representation of image
relationships.

3) Finding the Optimal Stitching Order: Using a modified
depth-first search (DFS), the graph is traversed starting
from a central or selected image. Neighbors are priori-
tized based on edge weights, ensuring that images with
the strongest matches are stitched first. This approach
minimizes errors in alignment and blending.

The algorithm ensures that images are stitched in an or-
der that maximizes feature alignment and reduces distortion.
Stitching then proceeds as follows: from the leftmost image to
the center (iterating forward) and from the rightmost image to
the center (iterating backward). The resulting stitched images
are blended seamlessly.

When the number of images is fewer than or equal to four,
a straightforward sequential stitching approach from left to
right is employed. For five or more images, this optimized
ordering algorithm is used to enhance the stitching quality.
The technique performs well for up to six images; beyond
this, perspective distortions may occur due to the limitations
of the perspective transform.

H. Handling Very Little/No Overlap

To ensure high-quality image alignment, we rejected images
with no or very little overlap. Specifically, if multiple inliers
were found to have the same destination keypoints, they
were skipped as they likely resulted from incorrect feature
matching. Additionally, if the number of inliers after filtering
was less than 10, the image was discarded. Furthermore, if
the homography matrix can’t be computed, the image was
excluded from the final panorama to prevent misalignment and
artifacts.

1. Final Results from Train and Test Sets

This Section includes final outputs for all the Train and Test
Cases. We were able to successfully stitch all the images for
all the Train and Test cases.
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Fig. 8. Train Set 1 Panorama Image
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Fig. 9. Train Set 2 Panorama Image

Fig. 12. Train CustomSet 2 Panorama Image

Fig. 10. Train Set 3 Panorama Image

Fig. 11. Train CustomSet 1 Panorama Image
Fig. 13. Test Set 1 Panorama Image



Fig. 14. Test Set 2 Panorama Image
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Fig. 16. Test Set 4 Panorama Image

Fig. 15. Test Set 3 Panorama Image



II. PHASE 2: DEEP LEARNING APPROACH

We implemented two deep learning approaches to estimate
the homography between two images. The deep learning
model effectively combines corner detection, ANMS, feature
extraction, feature matching, RANSAC and estimate homog-
raphy all into one.

A. Data Generation

To train a Convolutional Neural Network (CNN) to estimate
homography between a pair of images , we need data (pairs
of images) with the known homography between them. We
generate synthetic pairs of images to train a network. Below
are the steps followed to generate data:

1) Obtain a random patch (P4 of size Mp x Np) from the
image (I4 of size M x N) with M > Mp and N >
Np such that all the pixels in the patch will lie within
the image after warping the random extracted patch with
maximum possible perturbation is in [—p, p]. In our case,
M = 640, N = 480, M, = N, = 128 and p = 32

2) Performed a random perturbation in the range [—p, p] to
the corner points (right bottom corner, left bottom corner,
top right corner, and top left corner) of P4 in 4.

3) Using the value of H f to warp I4 and obtain Ip. Also
used cv2.warpPerspective to implement this part.
After this, extracted the patch Pp using the corners in
Ca.

4) We generated labels (ground truth homography between
the two patches) as H f. However regressing the 9 values
of the homography matrix directly yielded bad results.
Instead, another way was to regress the amount the
corners of the patch P4 denoted by C'4 need to be moved
so that they are aligned with Pg. This is denoted by
HA4Pt and was used as our labels. Remember, H4 Pt is
given by H4Pt = Cp — Cy.

5) Now, we stack the image patches P4 and Pp depthwise
to obtain an input of size Mp X Np x 2 where 2 is the
number of channels in each patch which is a grayscale
image.

Example synthetic pairs of images to train and validate our
model are shown below.

Fig. 17. Synthetic Dataset - Sample 1

Fig. 19. Synthetic Dataset - Sample 3

Fig. 20. Synthetic Dataset - Sample 4

B. Supervised Approach

The overview of Supervised Approach for predicting Ho-
mography between 2 images is figure 21]

1) Architecture: The Supervised Homography Network si-
multaneously performs homography estimation and feature
extraction through a fully convolutional design, utilizing an
architecture similar to VGG Net. While effective, this approach
may struggle in scenarios involving significant occlusions or
repetitive textures. To address these challenges and enhance
accuracy, supervised learning techniques leverage ground truth
data to provide crucial guidance.

A common training strategy involves using labeled datasets
containing image pairs with precomputed H4 Pt values from
the data generation phase. The network is optimized to directly
predict the known H4Pt and loss function is L2 loss between
predicted and ground truth H4Pt, thereby ensuring a more
focused learning process. The architecture is illustrated in
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Fig. 21. Overview of the Supervised Approach

Figure [22] and

Output Shape Param #
8] 5,520
Sequential: 1-1 , 128, 8, 8] --
Lconv2d: 2-1 128, 128] 1,216
L gatchNorma2d: 2-2 128, 128] 128
LpeLu: 2-3 128, 128] --
Lconvad: 2-4 128, 128] 36,928
LBatchNorm2d: 2-5 128] 128
LRelU: 2-6 128] --
L-MaxPool2d: 2-7 64] --
Lconvad: 2-8 64] 36,928
LgatchNorm2d: 2-9 64] 128
LReLu: 2-10 64] --
Lconvad: 2-11 64] 36,928
LBatchNorm2d: 2-12 64] 128
LReLu: 2-13 64] --
LMaxPool2d: 2-14 32] --
Lconvad: 2-15 32 73,856
LBatchNorm2d: 2-16 32 256
LReLu: 2-17 32 .-
Lconvad: 2-18 32 147,584
LBatchNorm2d: 2-19 32 256
LReLu: 2-20 32 --
LMaxPool2d: 2-21 16 --
Lconvad: 2-22 16 147,584
LBatchNorm2d: 2-23 16 256
LReLu: 2-24 16 --
Lconvad: 2-25 16 147,584
LBatchNorm2d: 2-26 s 16 256
LReLU: 2-27 16 --
LMaxPool2d: 2-28 8, 8] --
8, 8] --

8,389,632

LLinear: 2-32 8,200

P 9, s
Trainable params: 9,033,496
Non-trainable params: @

Fig. 22. Summary of the Supervised Network

2) Training Parameters: For training the homography
model, we employ the Stochastic Gradient Descent (SGD)
optimizer with a learning rate of 0.005 and a momentum of
0.9. The model is trained with a minibatch size of 64 for
a total of 20 epochs. Additionally, a learning rate scheduler,
torch.optim.lr_scheduler.SteplLR, is utilized with
a step size of 4 and a decay factor of 0.1 to adjust the learning
rate dynamically during training.

3) Results: Figure 23] presents the training and validation
loss across epochs, while Table [ summarizes the average End-
Point Error (EPE) for the supervised model. The algorithm
run-time for forward pass of the network after the graph has
been initialized is 1.1 ms.

Dataset Avg EPE
Train 33.8836
Validation 31.4324
Test 28.2562
TABLE T

AVERAGE EPE FOR THE SUPERVISED MODEL

Training Loss vs Epochs

10
Epoch

Validation Loss vs Epochs

10
Epoch

Fig. 23. Training and Validation Loss vs Epochs for Supervised Approach

C. Unsupervised Approach

The Unsupervised Approach for predicting homography
between two images is summarized in Figure [24]
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Fig. 24. Overview of the Unsupervised Approach

1) Architecture: The Unsupervised Homography Network
integrates homography estimation and feature extraction
within a fully convolutional design, leveraging an architecture
akin to VGGI16. The training process involves estimating
HA4Pt, which is subsequently converted into a homography
matrix using Tensor Direct Linear Transform (DLT). This
computed homography matrix is then utilized to warp image
14, from which a predicted patch B is extracted. The model
is trained by computing an L1 loss between the predicted and
actual patch B, eliminating the need for labeled data or ground
truth values.



The architecture is depicted in Figure 25| amd [3§]

Layer (type:depth-idx)

UnSupNet

Sequential: 1-1
Lconvad: 2-1
LReLu: 2-2
LConvad: 2-3
LReLu: 2-4
LMaxpool2d: 2-5
LConv2d: 2-6
LReLu: 2-7
Lconvad: 2-8
LReLu: 2-9
L-MaxPool2d: 2-10

Lconvad: 2-13
LReLu: 2-14
LMaxPool2d: 2-15
LConvad: 2-16
LReLu: 2-17
Lconvad: 2-18
LReLu: 2-19
Sequential: 1-2
LFlatten: 2-20
I—Dropout: 2-21
Liinear: 2-22
LReLu: 2-23
I—Dropout: 2-24
Liinear: 2-25

Output Shape

[128,
[128,
[128,
[128,
[128,
[128,
[128,
[128,
[128,
[128,
[128,
[128,
[128,
[128,
[128,
[128,
[128,
[128,
[128,
[128,
[128,
[128,
[128,
[128,
[128,
[128,
[128,

4, 2]
128, 16,
128,

32768]
32768]
1024]
1024]
1624]

[128, 8]

1,216
36,928
36,928
36,928
73,856
147,584
147,584

147,584

33,555,456

8,200

Total params: 34,192,264
Trainable params: 34,192,264
Non-trainable params: 0

Fig. 25. Summary of the Unsupervised Network

2) Training Parameters: For training, the homography
model employs the Adam optimizer with a learning rate of
0.0001 and B; = 0.9. The model is trained using a minibatch
size of 128 over 50 epochs.

3) Tensor Direct Linear Transform (Tensor DLT): A funda-
mental component of the architecture is the Tensor DLT layer,
which converts the four-point parameterization output into a
full 3 x 3 homography matrix. This layer plays a crucial role
in the network’s learning process, enabling backpropagation
during transformation.

4) Spatial Transformation Layer: The Spatial Transformer
Layer enhances the network’s capability by enabling inverse
warping of images. It computes the normalized inverse of the
homography matrix to generate a pixel coordinate grid for
the warping process. Bilinear interpolation is employed for
image sampling, ensuring differentiability for loss function
backpropagation. This functionality is implemented using the
kornia.geometry.transform.warp_perspective
function, which supports gradient backpropagation.

5) Results: Figure presents the training and validation
loss over epochs, while Table |lIf summarizes the average End-
Point Error (EPE) for the unsupervised model. The algorithm
run-time for forward pass of the network after the graph has
been initialized is 1.9 ms.

Dataset Avg EPE
Train 52.8069
Validation 51.8856
Test 47.4981
TABLE 1T

AVERAGE EPE FOR THE UNSUPERVISED MODEL

Training Loss vs Epochs

0 5 10 15 20 30 35 40 a5

25
Epoch

Validation Loss vs Epochs

0 5 10 15 20 25 30 35 40 as
Epoch

Fig. 26. Training and Validation Loss vs Epochs for Unsupervised Approach

D. Stitching Images using Supervised or Unsupervised Ap-
proach

Multiple approaches were explored for stitching images,
leveraging both supervised and unsupervised models. Initially,
images were resized to 128x128 before being passed through
the model for homography prediction. However, since trans-
lation was not accurately predicted in either model, feature
matching and RANSAC from Phase 1 were used to estimate
translation, while the trained model predicted the remain-
ing homography parameters. Despite these refinements, the
stitched images lacked visual coherence.

A second approach assumed minimal movement between
consecutive frames in a slow-moving video. A 128x128 patch
was extracted from the middle-right section of the first image,
and the same corner coordinates were used to extract a
corresponding patch from the second image. The homography
matrix was then predicted between these two patches and
applied to the full images. However, this method also failed
to produce satisfactory results.

A third and most effective approach in all the strategies we
tried was this one, even though results were not good, they are
reported below in the results section. involved obtaining the
homography matrix from the Phase 1 (Traditional) approach
to estimate translation. The images were then resized to
128x128 pixels and provided as input to the trained model
for homography prediction. The predicted homography matrix
was scaled back to the original image dimensions using the
following transformation:

Sx1 0 0
Sl = 0 Syl 0 (1)
0 0 1
% 0 0
Sl=10 1 0 (2)
0 0 1



Horiginal = 52_1 ' Hpredicted ' Sl (3)

Finally, the translation values in H,,;ginq Were replaced
with those obtained from the traditional homography matrix
before stitching the images. This iterative process continued
with each stitched image being merged with the next frame,
resulting in significantly improved panorama quality. The final
images were saved for further evaluation.

E. Results

The figures 27] 28] 29] and presents classical feature
based (from Phase 1), supervised, unsupervised estimated

homographies against a synthetic ground truth for various
images for Train/Val/Test set.

The figures [31] [32] and [33] presents stitching of Test Set
using Supervised Approach.

The figures [34] [35] and [36] presents stitching of Test Set
using Unsupervised Approach.

III. CONCLUSION

This project consisted of two phases. In phase 1, we used the
traditional approaches to detect features, match them, calculate
transformation between image frames using the homography
matrix and finally stitch/blend them. In phase 2, we used the
deep learning approaches to achieve similar results. Overall,
deep learning approach proved to be fast and more robust.

IV. APPENDIX

Download the Checkpoints from the link below.

« Supervised
o Unsupervised

Unwarped Randoem Crop
I warped Random Crop
Ml Supervizsed Warp Estimation
Ml Unsupervised Warp Estimotion
Clasaical Warp Eatimation

Fig. 27. Train Set Image output of Traditional, Supervised and Unsupervised
approaches on Homography estimation comparison

Unwarped Random Crop
I Warped Random Crop
M Supervised Warp Estimation
I Unsupervised Warp Estimation
Classical Warp Estimation

Fig. 28. Val Set Image output of Traditional, Supervised and Unsupervised
approaches on Homography estimation comparison

Unwarped Random Crop
I Warped Random Crop
Il Supervized Warp Estimation
Ml Unsupervised Warp Estimation
Classical Warp Estimation

Fig. 29. Test Set Image output of Traditional, Supervised and Unsupervised
approaches on Homography estimation comparison


https://wpi0-my.sharepoint.com/:u:/g/personal/sporwal_wpi_edu/EbEvSchMS1ZEhTQsHcSssyMBwCEfUPRJj4hlhCRAXXg73A?e=wx24CM
https://wpi0-my.sharepoint.com/:u:/g/personal/sporwal_wpi_edu/ET-y14jv_gFMuPxcd8c9RKwB6ASryu3dcpYgcfTp1e2xgg?e=7Y4xU6

Unwarped Randerm Crop
[ Wwarped Random Crop
I Supervised Warp Estimation
B Unsupervized Warp Estimation
Classical Warp Estimation

Fig. 32. Stitched Image for Trees Test Set using Supervised Approach

Fig. 30. Test Set Image output of Traditional, Supervised and Unsupervised
approaches on Homography estimation comparison

Fig. 31. Stitched Image for Unity Hall Test Set using Supervised Approach

Fig. 33. Stitched Image for Tower Test Set using Supervised Approach



Fig. 34. Stitched Image for Unity Hall Test Set using Unsupervised Approach

Fig. 36. Stitched Image for Tower Test Set using Unsupervised Approach

Fig. 35. Stitched Image for Trees Test Set using Unsupervised Approach
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Fig. 38. Unsupervised Model Architecture

Fig. 37. Supervised Model Architecture
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