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Abstract—In this work, we develop a stereo visual-inertial
odometry system based on the Multi-State Constraint Kalman
Filter (MSCKF) [1] [2], employing a tightly integrated sensor
fusion framework for VIO. The system combines data from a
stereo camera setup and an Inertial Measurement Unit (IMU) to
estimate motion and localization. As part of the implementation,
we focus on developing and integrating seven key functions
central to the MSCKF algorithm.

I. INTRODUCTION

Estimating depth using a single camera has long remained
a difficult problem within computer vision. To overcome this,
researchers have traditionally employed stereo camera setups,
utilizing the spatial offset between two viewpoints to infer
depth through feature matching across image pairs. However,
this technique is predominantly effective only for static scenes
and tends to fail in dynamic environments or in the presence of
motion blur — challenges frequently encountered in robotics
applications. Although stereo vision offers valuable three-
dimensional insights, its performance degrades significantly
under motion-heavy conditions, underscoring the need for
more resilient alternatives.

In this project, we explore sensor fusion between a monoc-
ular camera and an Inertial Measurement Unit (IMU) to esti-
mate the robot’s trajectory and position, an approach known as
Visual-Inertial Odometry (VIO). IMUs are highly responsive
to rapid movements and sudden changes in acceleration, com-
pensating for situations where the camera alone may struggle.
However, IMUs are prone to drift over time without exter-
nal correction. Conversely, cameras provide accurate spatial
localization but are sensitive to fast motions and environ-
mental noise. To address these complementary weaknesses,
we implement a filter-based stereo VIO framework using the
Multi-State Constraint Kalman Filter (MSCKF) algorithm. We
plan to validate our system’s performance through experiments
conducted on the Machine Hall 01 easy sequence from the
EuRoC dataset.

II. DATASET

For this project, we employed the Machine Hall 01 easy
sequence from the EuRoC dataset [3]]. Collected using a Micro
Aerial Vehicle (MAV), the dataset provides stereo imagery
synchronized with Inertial Measurement Unit (IMU) readings.
It also includes highly accurate ground truth data for both
motion and structure, captured using a Vicon Motion Capture
system capable of sub-millimeter precision.

III. INITIALIZE GRAVITY AND BIAS

To initialize gravity and bias, we utilize the first 300
messages received from the IMU while the robot is in a static
state. Each message contains accelerometer and gyroscope
measurements, which are used to compute the gravity vector
g = [0, 0, gnorm)> Where gnomm is the norm of the accelerometer
readings. The gyroscope bias b, is initialized as the average
of the gyroscope measurements.

IV. BATCH IMU PROCESSING

The IMU message buffer stores a sequence of measure-
ments. For every message received before the feature times-
tamp, the process model is applied to propagate and update
the state x accordingly.

V. PROCESS MODEL

The continuous dynamics of the estimated IMU state is:
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The linearized continuous dynamics for the error IMU state
is:
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F and G in the above equation can be defined as:
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VI. PREDICT NEW STATE

For each incoming IMU measurement, we apply fourth-
order Runge-Kutta numerical integration to propagate the
system state to the next time step, following the procedure
outlined in the provided sample code. The integration involves
computing the intermediate terms ki, ko, k3, and k4, derived
from the time derivatives of orientation and acceleration. These
intermediate values are then used to predict the updated system
state, which includes orientation, velocity, and position.

VII. STATE AUGMENTATION

State augmentation includes updating the camera pose,
defined as (& ¢, “pc, ), where & ¢ is the orientation and “pc,
is the position. This pose is calculated as:
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VIII. ADDING FEATURE OBSERVATION

This step/function updates the latest feature detected to the
total feature map if it does not exist. Feature map addition is
done with the help of feature ID and current state ID keys.

;T
”i,z}

IX. MEASUREMENT UPDATE

Zij: [U‘Zl vzj,l U32 (12)

A single feature f;, as observed by the stereo cameras with
pose (5'q, ©pe,), can be represented as (57'q, “pe, 1) and
(gi’2q, %pc, 2) for the left and right cameras respectively. The

measurement matrix H is represented as:

T
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The residual r,, is computed as:
rn=Q%r =Ty X +n, (14)

where r,, is the residual.
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The Kalman gain K can be computed as:
K = PTH(TyPT + R,) ™! (16)
SKT =TyP (17)
AX =Kr, (18)
Pyiijpr1 = (Iexk — KTy ) Py, (19)

X. RESULTS

The estimated trajectory attains an RMSE Absolute Tra-
jectory Error of 0.10636397690854665 relative to the Vicon
reference in translation, 127.46498255468062 in rotation and
1.707416155297823 in scale.
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Fig. 3. Trajectory Top View
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Fig. 4. Translation Drift
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Fig. 6. Rotation Error
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