
Clearance for Manipulators
Piyush Thapar and Sumukh Porwal

Worcester Polytechnic Institute
Email: {pthapar, sporwal}@wpi.edu

Abstract—Robotic manipulation is a complex task, especially
when it comes to accurately calculating clearance distances
needed for safe and efficient motion planning. Ensuring enough
workspace clearance is key to avoiding collisions and boosting
the safety and reliability of robots, particularly in dynamic
and unpredictable environments. However, traditional motion
planning algorithms, like RRT*, often struggle when dealing
with high-dimensional robotic systems due to the computational
demands of continuous clearance calculations—especially for
robots with multiple degrees of freedom. This makes optimizing
for workspace clearance a challenging yet crucial goal in building
robust autonomous systems. In this project, we explore using
learning-based approaches to speed up distance computations in
asymptotically optimal planners. By leveraging neural networks
to predict minimum clearance, we aim to significantly improve
both the convergence rate and efficiency of motion planners for
complex robotic manipulators. Focusing on the Fetch robot, we
developed a custom dataset of high-dimensional configurations
to test how well learning-based methods can optimize motion
planning performance. Our initial findings suggest that these
techniques can effectively complement traditional algorithms,
opening up new possibilities for more scalable and adaptable
robotic systems.

I. INTRODUCTION

Traditional algorithms, such as Rapidly-exploring Random
Trees (RRT*), are widely utilized for motion planning, but
they face substantial difficulties when applied to robots with
high degrees of freedom. For instance, solving for the motion
of an 8-DOF (Degree of Freedom) Fetch robot under tight
computational constraints often proves infeasible within
practical timeframes. The bottleneck lies primarily in the
computation of clearance metrics, which severely impacts
the performance and scalability of these algorithms. Thus,
addressing this limitation is pivotal for enabling robotic
systems to operate effectively in environments requiring high
precision, adaptability, and safety.

A promising avenue for overcoming these challenges
is the adoption of learning-based methods for distance
computation. These methods aim to replace traditional
clearance calculation techniques with approaches that are
both faster and more accurate, leveraging advancements in
machine learning. The focus of this project is to explore and
implement learning-based strategies for optimizing distance
calculations within asymptotically optimal motion planners,
such as RRT*. By integrating these approaches, we aim to
improve the convergence rates and overall efficiency of these
planners, particularly for complex robotic systems with high
degrees of freedom.

II. RELATED WORK

The problem of efficient and accurate collision detection
and clearance estimation in robotic motion planning has been
widely studied. Traditional approaches often rely on computa-
tionally intensive distance calculations, which can significantly
impact the scalability of motion planners, especially for robots
with high degrees of freedom. To address these challenges,
learning-based methods have been proposed to accelerate
collision checking and clearance estimation.

One notable approach is Fastron [1], an online learning-
based model that uses active learning strategies for proxy
collision detection. Fastron aims to efficiently classify whether
configurations are in collision, leveraging a lightweight model
to approximate collision checks. This allows for significant
speedups in motion planning, especially in dynamic environ-
ments where real-time performance is critical.

Similarly, Kew et al. [2] introduced a neural network-based
method to estimate collision clearance in batched motion
planning scenarios. Their method uses a deep neural network
to predict clearance values, reducing the computational load
associated with traditional distance calculations. By batching
multiple queries, this approach enables planners to perform
more efficient trajectory optimization, leading to improved
performance in complex robotic environments.

Our work aligns with these learning-based methods by
exploring neural network architectures to predict clearance
distances for the Fetch robot. By integrating clearance estima-
tors into the RRT* planning framework using the Grapeshot
repository, we aim to improve the efficiency of motion plan-
ning algorithms for high-dimensional robotic systems. This
approach leverages the strengths of prior works while focus-
ing on optimizing performance in environments with dense
obstacles and limited clearance.

III. ENVIRONMENT SETUP

To facilitate experimentation, a simulation environment was
established using the Fetch robot and a spherical obstacle. The
initial and final states of the Fetch robot were strategically
placed at diametrically opposite sides of the sphere. This
configuration was chosen to ensure that the robot’s planned
path maximizes clearance from the obstacle while navigating
between the defined start and goal states. Such a setup ef-
fectively mimics real-world scenarios where safe navigation
around obstacles is paramount, thereby providing a suitable
platform for testing clearance optimization methods.

To streamline the motion planning process, we leveraged
the Grapeshot [3] repository, which seamlessly integrates the



Open Motion Planning Library (OMPL) [4] with the PyBullet
visualizer. This integration not only enhances the visualization
of planned trajectories but also enables rapid experimentation
with various motion planning algorithms, facilitating efficient
evaluation of clearance optimization strategies in complex
robotic environments.

Fig. 1. Fetch robot in PyBullet Environment

IV. IMPLEMENTING RRT* IN GRAPESHOT USING
PYBULLET

A dedicated class was developed within the exist-
ing Grapeshot codebase to implement a custom op-
timization objective for RRT*. This objective, termed
PathLengthClearanceObjective, utilizes PyBullet’s
minimum distance function to calculate both StateCost
and MotionCost. These metrics represent the minimum
distance between the robot and obstacles for individual states
and transitions, respectively. By integrating this objective into
RRT*, the planner was enhanced to prioritize paths that
maximize clearance, improving both safety and reliability in
complex environments.

V. METHODOLOGY

A. Dataset Collection

A comprehensive dataset was generated over 72 hours using
multiple WPI Turing Machines, resulting in 17 million unique
robotic states. Each state includes annotated joint positions,
obstacle attributes, and the minimum distance to the nearest
obstacle, computed using PyBullet’s distance function. The
dataset spans three environments, detailed as follows:

1) Environment with One Obstacle: This dataset contains
10 million samples, each with 15 attributes:

• Eight Fetch robot joint states: torso lift joint,
shoulder pan joint, shoulder lift
joint, upper arm roll joint, elbow
flex joint, forearm roll joint, wrist
flex joint, wrist roll joint.

• Obstacle coordinates (x, y, z) and dimensions
(length, breadth, height).

• Minimum distance to the obstacle.
2) Environment with Two Obstacles: This dataset contains

5.3 million samples with 21 attributes:
• Eight joint states as described above.
• Two obstacles’ coordinates (x, y, z) and dimensions

(length, breadth, height).
• Minimum distance to the nearest obstacle.
3) Environment with Multiple Obstacles (Table Scenes):

For this environment, obstacle positions were fixed relative to
the table. Obstacle dimensions were excluded, resulting in a
simplified dataset of 1.7 million samples with 12 attributes:

• Eight joint states as described above.
• Obstacle coordinates (x, y, z) relative to the table

center.
• Minimum distance to the nearest obstacle.
4) Summary of Datasets: To provide a clear comparison,

Table I summarizes the attributes and sample sizes for each
dataset:

TABLE I
SUMMARY OF DATASET ATTRIBUTES AND SIZES

Environment Samples Attributes Details
One Obstacle 10M 15 Joint states + obstacle co-

ordinates/dimensions

Two Obstacles 5.3M 21 Joint states +
two obstacles’
coordinates/dimensions

Multiple Obstacles 1.7M 12 Joint states + obstacle co-
ordinates (table-relative)

Fig. 2. Generated dataset of robotic states

B. Neural Network Model Architecture

The core of this project involves designing and implement-
ing a neural network model to predict the minimum distance
between the Fetch robot and obstacles in its environment.
The chosen architecture, named DistancePredictor, is
a feedforward neural network tailored to handle the high-
dimensional input data and produce accurate distance predic-
tions. Below, we detail the network structure and hyperparam-
eter settings used in the model. While the overall architecture
remains the same across all three environments, the input size
varies based on the number of attributes in the respective
datasets.

• Model Architecture:
The DistancePredictor neural network comprises
a fully connected (dense) architecture with the following
key characteristics:



– Input Layer: The network accepts input vectors of
varying sizes:
∗ Environment with One Obstacle: Input size = 14

(8 joint values + 6 obstacle-related parameters).
∗ Environment with Two Obstacles: Input size =

20 (8 joint values + 12 obstacle-related parameters
for two obstacles).

∗ Environment with Multiple Obstacles (Table
Scenes): Input size = 11 (8 joint values + 3
coordinates relative to the table center).

– Hidden Layers: The network includes 2 hidden layers
with 1400 neurons each. Each hidden layer is followed
by a ReLU (Rectified Linear Unit) activation function,
enabling the network to learn complex nonlinear map-
pings efficiently.

– Output Layer: The final layer consists of a single
neuron that outputs the predicted minimum distance
between the robot and the nearest obstacle.

– Sequential Structure: The network layers are orga-
nized into a sequential block for streamlined forward
computation.

• Loss Function:
To handle the regression task of predicting distances,
a custom loss function, WeightedMSELoss, is em-
ployed. This function is based on the Mean Squared Error
(MSE) metric but includes an adjustable weighting factor
to prioritize predictions for specific distance ranges. The
weighting mechanism ensures higher penalties for errors
when the true distance is less than 0.5, which is critical
for maintaining safety in proximity to obstacles. For this
implementation, the weighting factor is set to 30.

• Optimizer and Learning Rate:
The Adam optimizer, a widely-used method for stochastic
gradient descent, is utilized to update the model parame-
ters. The learning rate is set to 1.7495× 10−4, striking a
balance between convergence speed and stability during
training.

• Summary of Hyperparameters:
– Hidden Layers: [1400, 1400]
– Activation Function: ReLU
– Output Size: 1
– Loss Function: Weighted Mean Squared Error

(WeightedMSELoss) with weight factor = 30
– Optimizer: Adam
– Learning Rate: 1.7495× 10−4

– Input Sizes:
∗ Environment with One Obstacle: 14
∗ Environment with Two Obstacles: 20
∗ Environment with Multiple Obstacles (Table

Scenes): 11
This architecture and the associated hyperparameters were

chosen to achieve a balance between model complexity and
computational efficiency, ensuring robust performance on the
task of distance prediction for complex robotic scenarios
across all three environments.

Fig. 3. Fetch Robot Planning in Table Scene (Bonus)

C. Implementation

The proposed implementation focuses on leveraging neural
networks for efficient motion planning. Below is a concise
breakdown of the methodologies employed:

The distance prediction models are integrated into the mo-
tion planning framework to ensure adaptability and efficiency
in diverse robotic scenarios. The integration employs the
following approaches:

• Single Obstacle Environments: The model trained for
single obstacle environments is utilized for precise dis-
tance predictions.

• Two Obstacle Environments: A dedicated model trained
for two obstacles is integrated for handling multi-obstacle
scenarios effectively.

• Dual Prediction Method: The single-obstacle trained
model is called twice, once for each obstacle, and the
minimum predicted distance is computed to enhance
robustness in multi-obstacle scenarios.

• Table Scene Generalization (Bonus): For environments
with static obstacles (e.g., a table), the model trained on
fixed obstacle positions dynamically adapts to avoid all
associated obstacles.

• Path Length Optimization Objective: The path length
optimization objective is enhanced by integrating the
neural network-based distance prediction model. Instead
of relying on PyBullet’s GJK (Gilbert-Johnson-Keerthi)
algorithm for clearance evaluation, the objective uses
the predicted distances from the trained neural network
model.

• Dynamic Clearance Evaluation: Combines neural net-
work predictions with traditional GJK method for robust
safety margins.

VI. RESULTS

The results presented in this section demonstrate the per-
formance of the RRT* algorithm in various environments. For
each scenario described below, the model was executed for
a total duration of 10 seconds, utilizing RRT* to compute a
viable path. The evaluation metrics used to compare the results
include the path cost and the number of states in the tree after



the fixed planning time. The outcomes provide insights into
the efficiency and effectiveness of the neural network-based
clearance function compared to traditional methods.

A. Environment with One Obstacle

In an environment containing a single obstacle, the RRT*
algorithm was executed using two different clearance func-
tions. Figure 4 illustrates the results when using a neural
network as the clearance function. The average cost of the path
computed over 20 episodes was found to be 110.36, while the
tree contained 202 states after 10 seconds of planning.

Fig. 4. Path Cost for a Single Obstacle using Neural Network Clearance
Function

In comparison, Figure 5 shows the results when the GJK
algorithm was used as the clearance function. The average path
cost over 20 episodes was 114.98, and the number of states
in the tree after 10 seconds was 160.

Fig. 5. Path Cost for a Single Obstacle using GJK Clearance Function

B. Environment with Two Obstacles - Double Query

When the environment was configured with two obstacles,
a double-query approach was employed. Figure 6 shows the
performance of the RRT* algorithm using a neural network for
clearance. The average path cost calculated over 20 episodes
was 88.95, and the tree contained 153 states after 10 seconds
of computation.

Similarly, Figure 7 presents the results when using GJK for
clearance in the same environment. The average path cost for
20 episodes was 98.33, and the tree contained 129 states after
10 seconds of planning.

Fig. 6. Path Cost for Two Obstacles using Neural Network with Double
Query

Fig. 7. Path Cost for Two Obstacles using GJK Clearance Function

C. Environment with Two Obstacles - Single Query

In the single-query scenario for an environment with two ob-
stacles, the neural network-based clearance function achieved
an average path cost of 88.78 over 20 episodes, with 203 states
in the tree after 10 seconds, as shown in Figure 8.

Fig. 8. Path Cost for Two Obstacles using Neural Network with Single Query

In contrast, the GJK clearance function resulted in an
average path cost of 114.98 and 129 states in the tree, as
illustrated in Figure 9.

D. Environment with Multiple Obstacles (Table Scene) -
BONUS

The results for the table scene environment, characterized
by multiple obstacles, are reserved for further elaboration. This



Fig. 9. Path Cost for Two Obstacles using GJK Clearance Function

environment represents a complex scenario, providing a bonus
insight into the generalization capabilities of the clearance
functions.

E. Model Implications

The findings from these experiments underscore the effi-
ciency of the neural network in accurately predicting minimum
distances for a substantial portion of the dataset. To enhance
the model’s robustness and generalization across diverse envi-
ronments, several strategies were adopted:

• Increasing the diversity of training data by incorporating
more complex scenarios and balancing underrepresented
cases.

• Optimizing the network’s hyperparameters, such as the
learning rate and the size of hidden layers, to improve
performance.

Below are the test results for the neural network across
various cases:

1) Environment with One Obstacle and Two Obstacles
(Double Query): Figure 10 compares the predicted and
actual values for these configurations.

Fig. 10. Test Results for Neural Network with One Obstacle

2) Environment with Two Obstacles (Single Query):
Figure 11 presents the results for this setup.

3) Environment with Multiple Obstacles (Table Scene):
Figure 12 showcases the model’s predictions in a complex
multi-obstacle environment.

Fig. 11. Test Results for Neural Network with Two Obstacles

Fig. 12. Test Results for Neural Network with Table Scene

VII. LIMITATIONS AND FUTURE WORK

While the neural network-based clearance function demon-
strated promising results in many scenarios, it also exhibited
certain limitations that affected its overall performance. One
of the key challenges observed during the experiments was the
model’s inability to accurately predict small clearance values.
This limitation became particularly evident in scenarios where
obstacles were positioned very close to the potential path of
the robot.

Accurate clearance predictions are crucial for generating
optimal paths, as they directly influence the cost calculation
and tree expansion during the RRT* planning process. When
the neural network underestimated or overestimated small
clearance values, it led to:

1) Suboptimal Path Costs: The paths generated by the neu-
ral network-based clearance function often had higher or
lower costs compared to those produced by the traditional
GJK algorithm. This discrepancy arose because the model
failed to provide precise clearance values near obstacles,
resulting in either overly cautious or overly aggressive
tree expansions.

2) Deviations from GJK Results: In several cases, the
neural network’s predictions diverged significantly from
the GJK clearance values, especially in environments
with tightly spaced obstacles. This divergence affected
the overall reliability of the model in critical planning



scenarios.
3) Impact on Generalization: The model’s inability to

handle small clearances highlighted a need for further
improvement in its training process. Specifically, the
training dataset lacked sufficient representation of cases
with minimal clearance, which limited the model’s ability
to generalize effectively across diverse environments.

To address these issues, future work could focus on enhanc-
ing the model’s accuracy for small clearance values. Potential
strategies include:

• Data Augmentation: Increasing the diversity of the train-
ing dataset by incorporating more examples with small
clearances to improve the model’s learning capabilities
in these critical scenarios.

• Loss Function Optimization: Modifying the loss func-
tion to prioritize accuracy in predicting smaller clearance
values, ensuring that the model pays more attention to
these critical cases during training.

• Hybrid Approach: Combining the neural network with
traditional methods like GJK for cases where small clear-
ance values are encountered. This hybrid approach could
leverage the strengths of both techniques to achieve better
overall performance.

Despite these limitations, the results obtained from this
project provide a strong foundation for further research and
development. By addressing the identified challenges, future
iterations of the model can achieve improved accuracy and
robustness, paving the way for more effective path planning
in complex environments.

VIII. BREAK-DOWN OF CONTRIBUTIONS

This project involved collaborative efforts from both team
members, Sumukh Porwal and Piyush Thapar, in various
aspects of the work. Below, we provide a detailed breakdown
of each member’s contributions:

• Custom Environment Setup and Data Collection: Both
Sumukh and Piyush collaboratively worked on setting
up the simulation environment using the Fetch robot in
PyBullet. This included configuring the robot’s parame-
ters, placing obstacles, and designing the start and goal
configurations to maximize clearance. Additionally, both
team members contributed to the data collection process,
generating the dataset required for training the neural
network model.

• Neural Network Model Development and Training:
Both team members independently developed different
neural network models, experimenting with various ar-
chitectures and hyperparameters. After evaluating the per-
formance of each model, the best-performing components
were merged to create an optimized model that accurately
predicts clearance distances for efficient motion planning.

• Report Writing: Sumukh was responsible for the find-
ings, writing, and structuring the interim report, ensuring
a clear presentation of the project’s objectives, method-
ologies, and results.

• Presentation Preparation: Piyush was responsible
for creating a presentation summarizing the project’s
progress, key results, and future directions. This included
designing slides and organizing content to effectively
communicate the project outcomes.

IX. CONCLUSION

In this project, we explored the application of a neural
network-based clearance function within the RRT* path plan-
ning framework and evaluated its performance across various
scenarios. The results demonstrated the potential of using neu-
ral networks to streamline clearance computation, achieving
competitive path costs and tree expansion rates compared
to traditional methods like GJK. However, the study also
highlighted significant limitations, particularly in accurately
predicting small clearance values, which affected the model’s
ability to generate optimal paths in certain environments.

Through systematic experimentation, we identified key areas
for improvement, including the need for enhanced data diver-
sity and better loss function design. These findings underscore
the importance of balancing innovation with robustness, as
neural network-based methods continue to evolve for real-
world applications.

Overall, this work provides valuable insights into the ca-
pabilities and challenges of neural network-based clearance
functions for path planning. Future efforts should focus on
addressing the identified limitations, with the ultimate goal
of developing models that are both efficient and reliable in
navigating complex environments. By doing so, we can unlock
new possibilities for robotics and autonomous systems in
increasingly dynamic and obstacle-rich settings.

REFERENCES

[1] N. Das, N. Gupta, and M. Yip, “Fastron: An online learning-based
model and active learning strategy for proxy collision detection,” 2017.
[Online]. Available: https://arxiv.org/abs/1709.02316

[2] J. C. Kew, B. Ichter, M. Bandari, T.-W. E. Lee, and A. Faust,
“Neural collision clearance estimator for batched motion planning,”
2020. [Online]. Available: https://arxiv.org/abs/1910.05917

[3] Elpis Lab, “Grapeshot - Motion Planning Framework,” https://github.com/
elpis-lab/grapeshot/tree/master, 2024, accessed: Nov. 04, 2024.

[4] I. A. Şucan, M. Moll, and L. E. Kavraki, “The Open Motion Planning
Library,” IEEE Robotics & Automation Magazine, vol. 19, no. 4, pp.
72–82, December 2012, https://ompl.kavrakilab.org.

https://arxiv.org/abs/1709.02316
https://arxiv.org/abs/1910.05917
https://github.com/elpis-lab/grapeshot/tree/master
https://github.com/elpis-lab/grapeshot/tree/master
https://ompl.kavrakilab.org

	Introduction
	Related Work
	Environment Setup
	Implementing RRT* in Grapeshot using PyBullet
	Methodology
	Dataset Collection
	Environment with One Obstacle
	Environment with Two Obstacles
	Environment with Multiple Obstacles (Table Scenes)
	Summary of Datasets

	Neural Network Model Architecture
	Implementation

	Results
	Environment with One Obstacle
	Environment with Two Obstacles - Double Query
	Environment with Two Obstacles - Single Query
	Environment with Multiple Obstacles (Table Scene) - BONUS
	Model Implications

	Limitations and Future Work
	Break-down of Contributions
	Conclusion
	References

