
Deep Visual-Inertial Odometry
RBE549 Project 4 Phase 2

Sumukh Porwal, Piyush Thapar, Sarah Semy
MS Robotics Engineering

Worcester Polytechnic Institute
Email: sporwal@wpi.edu, pthapar@wpi.edu, srsemy@wpi.edu

Abstract—Accurate state estimation is fundamental to robust
robot navigation. This report explores deep-learning approaches
to Visual–Inertial Odometry (VIO) by developing and compar-
ing three neural architectures: (i) a vision-only network that
infers motion directly from consecutive image frames, (ii) an
inertial-only network that relies solely on raw IMU streams,
and (iii) a hybrid visual–inertial fusion network that integrates
both modalities within a unified framework. We detail the data
pipelines, network designs, and training procedures on a suite of
challenging trajectories.

I. INTRODUCTION

As autonomous vehicles and robotic platforms prolifer-
ate, the demand for navigation systems that are both ac-
curate and resilient has never been greater. Conventional
solutions—relying on GPS signals or large sensor arrays—can
be expensive and are easily disrupted by challenging envi-
ronmental conditions. Visual-Inertial Odometry (VIO) offers
a promising alternative by combining camera imagery with
inertial measurements to continuously track a device’s pose.
However, standard VIO pipelines often lose reliability when
operating in dynamic, low-light, or visually cluttered scenar-
ios.

In this paper, we present a deep learning–enhanced VIO
framework designed to boost both precision and robustness.
Whereas traditional VIO methods struggle when image fea-
tures degrade, our approach leverages neural networks to
learn and extract richer, more discriminative representations,
enabling more reliable pose estimates even under adverse con-
ditions. Inspired by recent successes in fusing convolutional
and sequence models for sensor data processing, our work
integrates advances from computer vision and inertial analysis
to address the inherent shortcomings of classical VIO.

II. DATASET GENERATION

A. Simulation Environment
All data were generated in Blender 3.6 LTS [?] us-

ing the Path-Tracing (Cycles) renderer to obtain pho-
torealistic imagery and physically-consistent motion blur.
A 100 × 100m planar mesh, textured with an 8 k
high-frequency image, supplies dense visual features through-
out the workspace. A six–degree-of-freedom quadrotor model
carries a downward-facing pinhole camera (focal length f =
450 px, 640×480 resolution) rigidly co-located with a tri-axial
inertial-measurement unit (IMU); thus the camera–IMU extrin-
sics satisfy RCI = I3 and tCI = 0.

Fig. 1: Reference Image for Visual Frames

B. Trajectory Design

Twelve 10 s trajectories (∆t = 1ms) were scripted via
Blender’s Animation Nodes to cover a broad motion envelope
(Fig. 2). Eight sequences are allocated to training and four to
evaluation. Each path is parameterised by smooth polynomials,
p(t) = [x(t), y(t), z(t)]⊤, while respecting quadrotor thrust
limits (∥a∥ ≤ 6m/s2). Attitude profiles are

ϕ(t) = Aϕ sin
(
2πt/Tϕ

)
, θ(t) = Aθ sin

(
2πt/Tθ

)
, ψ(t) = 0,

with amplitudes (Aϕ, Aθ) = (10◦, 10◦) and periods
(Tϕ, Tθ) = (10, 10) s. At each frame Blender records
ground-truth states

(
p, ṗ,R,ω

)
.

C. Sensor Modelling

Ideal measurements: Ideal specific force f∗ and angular
rate ω∗ are computed from analytic derivatives:

ω∗(t) = R⊤Ṙ, f∗(t) = R⊤(p̈− g
)
.

Noise and bias injection: To emulate a low-cost MEMS
IMU, (f∗,ω∗) are routed through the OysterSim low-accuracy
model [?]. Bias random walks (σba = 1.0 × 10−2 m/s2,
σbω = 1.0 × 10−2 rad/s) are added, giving IMU packets at
1000Hz. Blender renders RGB frames at 100Hz; each image
is therefore accompanied by 10 time-aligned IMU samples.



D. Ground-Truth Pose and Relative Motion

Absolute camera poses (p,q) are logged per render. Rela-
tive motion between frames k−1 and k is

∆qk = q−1
k−1qk, ∆pk = pk − pk−1

E. Data Organisation

Each sequence resides in
sequence_id/{images,imu}. Tab. I details file
layouts.

TABLE I: Dataset file formats

File Columns (units)

cam_poses.csv t, x, y, z, qw, qx, qy , qz
imu.csv t, ax, ay , az , ωx, ωy , ωz

rel_pose.csv t, ∆x,∆y,∆z, ∆qw,∆qx,∆qy ,∆qz

images/ RGB PNGs named frame_#.png

The final corpus contains 16,000 image–IMU pairs with
sub-millimetre ground truth, forming a controlled yet challeng-
ing benchmark for learning-based visual–inertial odometry.

III. NETWORK ARCHITECTURES

A. Deep Inertial Odometry Network

The proposed D-IO model—illustrated in Fig. 3—stacks
two bidirectional LSTM (Bi-LSTM) layers [1] followed by
a lightweight fully connected (FC) head:

• Bi-LSTM 1: input size 6, hidden size 256, 1 layer,
bidirectional. Output dimensionality 512 (256× 2).

• Bi-LSTM 2: input size 512, hidden size 256, 1 layer,
bidirectional. Output dimensionality 512.

• FC 1: R512→R128, ReLU activation.
• FC 2: R128→R7 (3-D translation + 4-D quaternion).
Only the final hidden state of the second Bi-LSTM layer is

forwarded to the FC head, enforcing the network to compress
the entire temporal context into a single latent vector.

We empirically set N =11 IMU frames, corresponding to
a 0.01 s window when the IMU is sampled at 1000Hz (our
default setting). The choice of a short window balances two
competing objectives: (i) capturing sufficient motion dynamics
and (ii) limiting drift accumulation within the integration
horizon.

B. Deep Visual Odometry Network

The Deep-Visual Odometry (D-VO) model, denoted
VO_Net, follows the following design: the two input frames
are processed by a shared-weight feature extractor, concate-
nated, and then split into translation and rotation heads
(Fig. 4).

• Input tensors: two RGB images I1, I2 ∈ R3×H×W ,
intensity-normalised to [−1, 1].

• Shared feature extractor (per frame)
1) BasicConvEncoder

– 7×7 conv, 32 ch., stride 2

– 5×5 conv, 64 ch., stride 2
– 3×3 conv, 128 ch., stride 2
– 3×3 conv, 256 ch., stride 2

All layers use BatchNorm and ReLU; the spatial res-
olution is reduced by a factor 16.

2) POLAUpdate block one 3×3 conv → ReLU, acting
as a lightweight feature-refinement stage (a proxy for
patch-overlapping self-attention).

Output: F1,F2 ∈ R256×H
16×

W
16 .

• Feature fusion: channel-wise concatenation F =[
F1 ; F2

]
∈ R512× H

16×
W
16 .

• Pose-specific heads
– Translation branch

1) 3×3 conv (512→256)
2) Adaptive MaxPool→ R256

3) FC 256→128 (ReLU)
4) FC 128→3 (∆p)

– Rotation branch identical topology but the final layer
outputs a 4-D unit quaternion ∆q.

• Output vector:
[
∆p ; ∆q

]
∈ R7.

C. Transformer-Based Visual–Inertial Odometry

• Inputs:
– Image pair: I± ∈ RB×6×128×128 (two RGB frames

stacked on channel axis).
– IMU window: I ∈ RB×11×6 (ax,ay,az,wx,wy,wz over

11 timesteps).
• Visual encoder:

1) ResNet-18 backbone: [2] instantiate with no pre-
trained weights.

2) Conv1 modification: replace first layer with

Conv2d(6 → 64, 7× 7, stride = 2, pad = 3).

3) Remove the global pooling and FC head, yielding
feature map (B, 512, 1, 1).

4) Projection: flatten to (B, 512) and apply

Linear(512 → embed dim = 512)

to produce a single visual token of shape (B, 1, 512).
• IMU encoder:

1) LSTM: single-layer, unidirectional with

input size = 6, hidden size = embed dim = 512

2) Processes (B, 11, 6) → (B, 11, 512), yielding a se-
quence of 11 IMU tokens.

• Positional embeddings:

P ∈ R1×(1+11)×512

learned and added to the concatenated token sequence to
encode order.

• Transformer fusion: [3]
– Stack visual + IMU tokens to (B, 12, 512), add P.



Crown Saddle Clover Figure 8 i3D

Half-circle Diamond Oval Patrick

Sphinx Star Tilted Thrice Zig-Zag

Fig. 2: Train and test trajectories used for dataset generation. Numbers correspond to trajectory IDs discussed in Section II.

Fig. 3: Deep Inertial Odometry architecture.

Fig. 4: Deep-Visual Odometry architecture.

– TransformerEncoder: 4 layers, 8 heads, feed-forward
dim = 4× 512, batch-first.

– Take the first (visual) output token, yielding (B, 512)
as the fused representation.

• Regression head:
1) MLP:

512
Linear−−−−−→ 256

ReLU−−−−→ 256
Linear−−−−−→ 7.

2) Split into translation ∆p ∈ R3 and quaternion ∆q ∈
R4.

3) Quaternion normalisation: enforce ∥∆q∥2 = 1 via
F.normalize.

• Output: concatenated (∆x,∆y,∆z, ∆qw,∆qx,∆qy,∆qz) ∈
RB×7.

Fig. 5: Visual–Inertial Odometry architecture.

IV. TRAINING DETAILS

All three models—D-VO, D-IO, and V-IO—are optimised
under the same data-sampling schedule, loss function, and
optimisation hyper-parameters.

Mini-batch composition: Every training sample repre-
sents the motion between two consecutive keyframes spaced
∆t=0.01 s (i.e.,ten IMU ticks).

• VO: stacked RGB pair
[
It, It+∆t

]
∈ R6×H×W .



• IO: IMU window It:t+N−1 ∈ RN×6 with N=11.
• VIO: both inputs above, synchronised.

Ground-truth supervision is the 7-DoF relative pose ∆T =[
∆p, ∆q

]
∈ R3+4 obtained by differencing the simulator

states.
Loss function: A unified translation–rotation loss is ap-

plied:

L = λp ∥p̂− p∥22 + λq
[
1− cos∠(q̂,q)

]
, (1)

where cos∠(q̂,q) is the cosine similarity between unit quater-
nions. Weights are fixed to λp = 0.6 and λq = 0.4, biasing
the network toward accurate translation while still regularising
orientation.

Optimisation: Adam (β1 = 0.9, β2 = 0.999) with an
initial learning rate of 10−3 is used throughout. Each model
is trained for 50 epochs with a batch size of 16 on a single
RTX 4070 GPU. Datasets from eight simulated trajectories are
concatenated via PYTORCH’s ConcatDataset wrapper to
enhance motion diversity, and images are resized to 128×128
pixels.

Quaternion post-processing: The final FC layer of every
network is followed by a Quaternion-Normalisation module
that projects the predicted four-vector onto SO(3); this sta-
bilises training and obviates any explicit unit-norm constraint
in (1).

V. RESULTS

1) Inertial Odometry network:
• RMSE on Training trajectory - 0.036244
• RMSE on Testing trajectory - 0.088381
• Refer figure 6 for Loss VS Epochs for Inertial Odom-

etry Model.
• Refer figure 7 for Predicted VS Ground Truth on

Training Dataset for Inertial Odometry Model.
• Refer figure 8 for Predicted VS Ground Truth on

Testing Dataset for Inertial Odometry Model.
2) Visual Odometry network:

• RMSE on Training trajectory - 0.020982
• RMSE on Testing trajectory - 0.059533
• Refer figure 9 for Loss VS Epochs for Visual Odometry

Model.
• Refer figure 10 for Predicted VS Ground Truth on

Training Dataset for Visual Odometry Model.
• Refer figure 11 for Predicted VS Ground Truth on

Testing Dataset for Visual Odometry Model.
3) Visual-Inertial Odometry network:

• RMSE on Training trajectory - 0.031114
• RMSE on Testing trajectory - 0.039211
• Refer figure 12 for Loss VS Epochs for Visual-Inertial

Odometry Model.
• Refer figure 13 for Predicted VS Ground Truth on

Training Dataset for Visual-Inertial Odometry Model.
• Refer figure 14 for Predicted VS Ground Truth on

Testing Dataset for Visual-Inertial Odometry Model.

Fig. 6: Loss VS Epochs for Inertial Odometry Model.

Fig. 7: Predicted VS Ground Truth on Training Dataset for
Inertial Odometry Model.

REFERENCES

[1] Zhiheng Huang, Wei Xu, and Kai Yu. Bidirectional lstm-crf models for
sequence tagging, 2015.

[2] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual
learning for image recognition, 2015.

[3] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion
Jones, Aidan N. Gomez, Lukasz Kaiser, and Illia Polosukhin. Attention
is all you need, 2023.



Fig. 8: Predicted VS Ground Truth on Testing Dataset for
Inertial Odometry Model.

Fig. 9: Loss VS Epochs for Visual Odometry Model.

Fig. 10: Predicted VS Ground Truth on Training Dataset for
Visual Odometry Model.

Fig. 11: Predicted VS Ground Truth on Testing Dataset for
Visual Odometry Model.



Fig. 12: Loss VS Epochs for Visual-Inertial Odometry Model.

Fig. 13: Predicted VS Ground Truth on Training Dataset for
Visual-Inertial Odometry Model.

Fig. 14: Predicted VS Ground Truth on Testing Dataset for
Visual-Inertial Odometry Model.


	Introduction
	Dataset Generation
	Simulation Environment
	Trajectory Design
	Sensor Modelling
	Ground‑Truth Pose and Relative Motion
	Data Organisation

	Network Architectures
	Deep Inertial Odometry Network
	Deep Visual Odometry Network
	Transformer‐Based Visual–Inertial Odometry

	Training Details
	Results
	References

