Einstein Vision
RBES549 Project 3

Sumukh Porwal, Piyush Thapar, Sarah Semy
MS Robotics Engineering
Worcester Polytechnic Institute
Email: sporwal@wpi.edu, pthapar@wpi.edu, srsemy@wpi.edu
Using 7 Late Days

Abstract—This project presents a vision-based dashboard de-
signed to enhance driver awareness and support autonomous
systems by visualizing how the vehicle perceives its environment.
Inspired by Tesla’s interface, it uses deep learning techniques
such as object detection, depth mapping, and pose estimation
to create a 3D scene of surrounding vehicles, pedestrians, lanes,
and signs. The resulting visualizations help in both real-time
understanding and debugging of the perception stack.

I. PIPELINE OVERVIEW

We worked with undistorted videos from 13 scenes recorded
by a Tesla Model S, focusing on the front view for object
visualization. Every 5th frame was processed using deep
learning models to extract object type, position, and rotation,
which we stored in a structured .txt format. This data was
later used in Blender, where scripts read the .txt and render
3D models of vehicles, pedestrians, and traffic elements.

To build this pipeline, we began by understanding and
integrating key components such as camera calibration, per-
ception, and rendering.

II. CHECKPOINT 1: BASIC FEATURES

In the first phase, we implement basic features that are
absolutely essential for a self-driving car. Includes the follow-
ing: different types of lanes, vehicles (without classification),
pedestrians (without pose), Traffic lights, and stop signs.

A. Lanes:

Accurate recognition of lane geometry is fundamental
for autonomous—vehicle localisation and control. We used a
Mask R-CNN model [[1]] on our custom dataset to segment four
lane categories—solid, dotted, divider, and double lines—and
post-process each binary mask to obtain a succinct set of
centre-line points that are subsequently rendered in Blender.
The point-sampling procedure is:

« obtain the binary mask produced by the network;

« extract all non—zero pixel coordinates (ys, z5); return an
empty array if none exist;

« generate 2-6 evenly spaced target rows yn.w between
min(y;) and max(y;);

o for every ¥y € Ypew:
1) locate indices where |ys — y| < 0.5 px; if none exist,

linearly interpolate an z value from (ys,xs);

2) otherwise, compute the mean of the corresponding x;

o pair each computed x with its y to form a new point and
cast the list to integers.

Sampling six such points per mask yields a robust lane
skeleton. Each pixel’s monocular depth estimate is then used
to lift the 2-D points into 3-D metric space under the
ground-plane assumption Z = 0. A Bézier curve is fitted
through these world points, coloured according to the lane
class, and inserted into the Blender scene. The same net-
work also flags ground-painted arrows and other road signs.
Empirically, the system performs best on highway imagery;
performance degrades in urban scenes where markings are
faint or missing.

S e——
dotted—line
-~

dotted
uowed—iine

dotted= 1 °4=11g
dotted—line
4

dotted—line

Fig. 1. Lanes and Road Sign Segmentation using Mask-RCNN

B. Vehicles, Pedestrians and Stop Signs:

For the first phase, we are required to detect the cars and
not classify them. We have used Detic [2]] for all the major
detections, it’s robust and easy to infer for an image. It outputs
class name, bounding box and the confidence score for each
of the detected object. The normalized depth map is obtained
using Marigold [3]. Using the object’s center coordinates
of the bounding box for each of the class, we mapped it to
the depth image. Using the camera intrinsics, pixel values, and
normailized depth, we estimated the 3D point of the object and

visualized it in Blender. A rotation matrix was employed to
rotate the 3D points with respect to the camera frame. The Z-
axis (depth) is perpendicular to the image plane. The equation
for the pixel to the 3D point is given below.

o= S
_ (u - Cy)z
y= —fy

where f,, f, are the focal lengths and equal to 1594.7, 1607.7
mm. The principal points ¢, ¢, are 655.2961, 414.3627 pixels
respectively. z is the depth and u, v are the pixel points of the
object in the image frame. The output z, y are the points in
the 3D world frame.

Fig. 2. Detic Output

Fig. 3. Depth using Marigold

C. Traffic light detection:

Detic was able to detect the traffic signal but was
not able to identify its color. To do so we de-
ployed Traffic-Light-Detection-Using-YOLOV3
[4] model which had pre-trained weights and built over the
YOLOV3 framework. This model was able to classify the
green light as ”go”, the red light as “stop”, the yellow light
as ”warning”, the left arrow as "goLeft” and so on. However,
the detection isn’t very robust as it seems to miss detections
from far away.

Fig. 4. Traffic-Light-Detection-Using-YOLOv3

III. CHECKPOINT 2: ADVANCED FEATURES

In this phase, we built over the previous work by enhancing
and adding more features.

A. Vehicle classification:

In this phase, are still using Facebook’s DETIC to do in-
stance segmentation. DETIC gives the existing COCO dataset
classes additionally also having the lvis classes. It also works
with a custom dictionary which we use to identify the car
sub-types such as sedan, SUV, pickup truck, hatchback, and
truck using custom vocabulary. We do essentially a non-max
suppression to get rid of multiple masks on the vehicles.
The other classes were identified using the standard predictor
including motorcycles and bicycles. As we are using a custom
vocabulary, the confidence of the predictions is on the lower
side as it uses CLIP embeddings as input. Hence we only opt
to identify car sub-types using the custom vocabulary while
the other objects like stop signs, cones, barrels, etc from the
standard predictor. Using custom vocabulary also brings the
confidence in predictions down.

B. Vehicle pose estimation:

We also had to estimate the orientation of the vehicles
for this phase. We use the implementation of YOLO3D [J5]
trained on the KITTI dataset. We match the bounding boxes
from DETIC to the regressor which predicts the bounding box

Fig. 5. Detic’s out for car subclasses

form YOLO3D. We use the yaw from this to spawn the cars
with the corresponding orientations. The model used the image
corp from DETIC ie. the 2D bounding box from DETIC
predictions, to estimate the 3D location and back project onto
the image. The results were pretty accurate for all vehicle
subtypes except the trucks in the scene which had an offset
in the orientation. The possible reason could be the smaller
number of truck images in the dataset compared to other
vehicles. However, it should be noted that the yaw from this
is not very accurate when the car is very close or is occluded.
A more advanced network might be utilized for better results.

Fig. 6. 3D bounding box projected in 2D from YOLO3D

C. Road Signs:

The same Mask R-CNN backbone is reused to segment
on—pavement road-sign symbols (e.g. arrows, turn indicators).
For every mask that corresponds to a road sign we crop the
RGB image with the predicted bounding box, convert the
crop to grayscale, and apply a fixed threshold that preserves
the high-contrast sign while replacing asphalt pixels with

a uniform background colour. The resulting binary crop is
flipped horizontally (so it faces the driver) and mapped onto a
textured plane that is placed in Blender at the depth returned
by the monocular map, reproducing the sign’s true position on
the road surface.

To recognise vertical speed-limit signs we combine Detic’s
object detections with text extracted by the EasyOCR engine
|I§]]. Whenever Detic labels a bounding box as road_sign,
we used output from OCR for that image and search the
transcribed string for the keywords speed, limit, or the
phrase speed 1limit. If a match is found, the first numerical
token is parsed as the posted speed value, which is then stored
with the sign’s pose for downstream planning modules. In our
evaluation this joint Detic-EasyOCR pipeline achieved high
recall and near-perfect precision.

Fig. 7. Speed Limit Text Detection using OCR

D. Objects:

Apart from the trivial objects, there are plenty of objects
such as dustbins, traffic cones, and cylinders present in the
surroundings which we aim to detect. DETIC was able to
handle the detection of these objects and was found to be
pretty robust. The blender models for all such objects were
already provided. Using the depth information, each object
was seamlessly spawned in the environment.

E. Pedestrian pose:

We have utilised the OSX framework. By inputting
monocular images of human figures, OSX generates 3D mesh
representations encapsulated in .obj files. This streamlined our
workflow by providing readily usable mesh data for integration
into Blender. To ensure precise positioning within our Blender
environment, we integrated depth and pixel information from
the input images to estimate the 3D world coordinates of the
mesh vertices. This approach facilitated the seamless integra-
tion of human poses into our Blender scenes, enhancing the
overall efficiency and effectiveness of our project workflow.

Fig. 8. Miscellaneous Objects (Dustbins) using Detic

Fig. 9. Miscellaneous Objects (traffic cones and barrels) using Detic

IV. CHECKPOINT 3: BELLS AND WHISTLES

A. Brake light and Indicators

Detic provides class-agnostic bounding boxes for vehicle
tail-lamp clusters. For each ROI we run the classical routine
to decide whether the lamp is active and to infer its colour
(red/yellow). The crop is first heavily blurred, converted
to HSV, and analysed on the value channel V. A dynamic
threshold 7 = max{my, V + koy} is formed from the
mean V and standard deviation oy (k=1.0, my,=130). Pixels
with V' > T are deemed “bright”; if their ratio exceeds
the decision margin (> 0.10) and V > my the lamp is
flagged ON, otherwise OFF. The hue of these bright pixels
determines whether the emission is predominantly red (brake)
or yellow (turn indicator). While computationally cheap, this
heuristic suffers when ambient reflections raise the background
brightness or when LED patterns are partially occluded, and
therefore attains only modest accuracy compared with the

Fig. 10. Breaklight detection

learning-based pipelines described earlier.

Fig. 11. OSX keypoints for detected person

B. Parked and moving vehicles

To distinguish between parked and moving vehicles, we
utilized optical flow analysis with the RAFT (8] algorithm,
which provides monocular optical flow images indicating
relative flow between pixels. Higher flow rates are represented
by intensified colors in the flow images. Initially, we attempted
to use the Sampson distance to mask moving vehicles based on
their higher flow rates. To classify as moving or parked, first
we evaluated the net flow within each bounding box provided
by DETIC and compared it with the flow from neighboring
regions. If the difference in flow was relatively low, indicating
minimal movement of the object relative to the scene, and if
the net flow of the mask itself fell within a specified range
(indicating that cars moving in the same direction were below
a minimum threshold), we categorized the vehicle as parked.

This approach is not 100% accurate as if an object is right in
front of camera it fails but works in most of the cases.

Fig. 12. RAFT’s Output

Fig. 13. Moving or Parked Classification - 1

Fig. 14. Moving or Parked Classification - 2

V. EXTRA CREDIT
A. Speed Humps:

To recognise vertical speed-limit signs we combine Detic’s
object detections with text extracted by the EasyOCR engine.
Whenever Detic labels a bounding box as road sign, we used
output from OCR for that image and search the transcribed
string for the keywords speed, hump, or the phrase speed
hump. If a match is found, a speed hump is spawned near
the sign on the road.

B. Collision Prediction:

We just did a simple logic here that we any car or pedestrian
is very close to the car i.e. within specified bounds and is also
moving towards the car then its considered as an potential
threat and marked red as the collision probability with that
object is high.

VI. RENDERING SAMPLES

Fig. 15. Render with Lanes and Vehicles

Fig. 16. Render with Green Traffic Light with a direction arrow Fig. 17. Render with Red Traffic Light

Fig. 18. Render with Traffic Cones Fig. 19. Render with Speed Limit

Fig. 20. Render with Stop Sign Fig. 21. Render with Dustbins

Fig. 22. Render with Moving or Parked vehicle marked Fig. 23. Render with correct Human joint pose

Fig. 24. Render with a Bicycle Fig. 25. Render with Speed Limit and Speed Hump

Fig. 26. Render with Motorcycle Fig. 27. Render with Collision Detection

Input Video

Mask RCNN s YoloV3 — OsX — RAFT m— EasyOCR

Marigold =~ == Detic — Yolo3D
I | | | 1] I | |
Monocular Vehicle Vehicle Lane Traffic Human Optical Text
Depth Detection Orientation Detection ight Pose Flow Recognitio
Estimation Estimation Detection Estimation n
1
Headlight
and Road
Signs
1
Misc.
Objects

Blender

Fig. 28. Einstein Vision Pipeline

REFERENCES

[1] Sovit Ranjan Rath. Lane detection using mask r-cnn, 2020.

[2] Xingyi Zhou, Rohit Girdhar, Armand Joulin, Philipp Krihenbiihl, and
Ishan Misra. Detecting twenty-thousand classes using image-level super-
vision, 2022.

[3] Bingxin Ke, Anton Obukhov, Shengyu Huang, Nando Metzger, Ro-
drigo Caye Daudt, and Konrad Schindler. Repurposing diffusion-based
image generators for monocular depth estimation, 2024.

[4] Sovit Ranjan Rath. Traffic light detection using yolov3. https://github.
com/sovit- 123/traffic-light-detection-using-yolov3, 2020.

[5] Arsalan Mousavian, Dragomir Anguelov, John Flynn, and Jana Kosecka.
3d bounding box estimation using deep learning and geometry, 2017.

[6] Jaided AI. Easyocr: Ready-to-use ocr with 80+ supported languages.
https://github.com/JaidedAl/EasyOCR; 2020.

[7] Jing Lin, Ailing Zeng, Haoqian Wang, Lei Zhang, and Yu Li. One-stage
3d whole-body mesh recovery with component aware transformer, 2023.

[8] Zachary Teed and Jia Deng. Raft: Recurrent all-pairs field transforms for
optical flow, 2020.

https://github.com/sovit-123/traffic-light-detection-using-yolov3
https://github.com/sovit-123/traffic-light-detection-using-yolov3
https://github.com/JaidedAI/EasyOCR

	Pipeline Overview
	Checkpoint 1: Basic Features
	Lanes:
	Vehicles, Pedestrians and Stop Signs:
	Traffic light detection:

	Checkpoint 2: Advanced Features
	Vehicle classification:
	Vehicle pose estimation:
	Road Signs:
	Objects:
	Pedestrian pose:

	Checkpoint 3: Bells and Whistles
	Brake light and Indicators
	Parked and moving vehicles

	Extra Credit
	Speed Humps:
	Collision Prediction:

	Rendering Samples
	References

