
NeRF - Neural Radiance Fields for View Synthesis
RBE549 Project 2

Sumukh Porwal, Piyush Thapar
MS Robotics Engineering

Worcester Polytechnic Institute
Email: sporwal@wpi.edu, pthapar@wpi.edu

Abstract—This report presents a comprehensive investigation
into a deep learning technique for reconstructing 3D scenes
using the Neural Radiance Field (NeRF) method. NeRF employs
a fully connected (non-convolutional) deep network that takes
as input a continuous 5D coordinate—comprising the spatial
location (x, y, z) and the viewing direction (θ, ϕ)—and outputs
both the volume density and the view-dependent radiance at that
location.

I. INTRODUCTION

NeRF introduces a novel method for view synthesis by opti-
mizing the parameters of a continuous 5D scene representation
to reduce rendering error across a set of captured images.
It generates new views by querying 5D coordinates along
camera rays and then applies traditional volume rendering
techniques to project the resulting colors and densities onto
an image. Since volume rendering is inherently differentiable,
only images with known camera poses are needed to optimize
the representation. This work explains how to effectively adjust
neural radiance fields to render photorealistic novel views
of scenes with complex geometry and appearance, achieving
results that surpass earlier approaches in neural rendering and
view synthesis. A physical depiction of NeRF is provided in
Figure 1.

Fig. 1. NeRF

II. METHODOLOGY

We model the continuous 5D scene using a multilayer
perceptron (MLP) network FΘ, which maps an input coor-
dinate (x, y, z, θ, ϕ) to an output tuple (r, g, b, σ). Here, σ
represents the volume density and (r, g, b) the RGB color, both
as functions of the spatial position (x, y, z) and the viewing
direction (θ, ϕ). The weights Θ are optimized so that each 5D
input is accurately associated with its corresponding density
and view-dependent color.

A. Volume Rendering with Radiance Fields
The 5D neural radiance field encapsulates a scene by

specifying the volume density and the directionally emitted
radiance at every point. To render the color along any ray
passing through the scene, we rely on classical volume ren-
dering principles. In this context, the volume density σ(x) is
interpreted as the differential probability of a ray terminating
at an infinitesimally small particle at location x. The expected
color C(r) of a camera ray r(t) = o + td, with near and far
bounds tn and tf , is defined as:

C(r) =

∫ tf

tn

T (t)σ(r(t)) c(r(t), t) dt,

where T (t) = exp

(
−
∫ t

tn

σ(r(s)) ds

)
.

Here, T (t) represents the cumulative transmittance along the
ray from tn to t, indicating the probability that the ray travels
from tn to t without interacting with any particle. To render a
view from our continuous neural radiance field, it is necessary
to numerically approximate the integral C(r) for each ray
corresponding to a pixel in the virtual camera. This is achieved
by applying quadrature through stratified sampling: the interval
[tn, tf ] is divided into N equal bins, and one sample is
uniformly drawn from each bin:

ti ∼ U

(
tn +

i− 1

N
(tf − tn), tn +

i

N
(tf − tn)

)
.

This stratified approach allows the MLP to be evaluated at
continuously varying positions during optimization, leading to:

Ĉ(r) =

N∑
i=1

Ti (1− exp(−σi δi)) ci,

where δi = ti+1−ti denotes the distance between consecutive
samples. This formulation, which computes C(r) from the set
of (ci, σi) values, is fully differentiable and corresponds to
standard alpha compositing with αi = 1− exp(−σi δi).

B. Dataset
We employ the dataset provided by the original authors. A

parser function is used to read data from a JSON file, process
and load the images along with their associated metadata,
and prepare the information for further analysis. This function
outputs details about camera parameters, images, poses, focal
lengths, and similar information for the test data.



C. Pixel To Ray

A pinhole camera model is utilized, where the camera
matrix and the transformation between the camera pose and the
world coordinate system are used to compute the origin and
the unit direction vector for each ray. NeRF requires that each
pixel in the image correspond to a ray. In our implementation,
we downscale the original 800 × 800 images to 400 × 400,
resulting in 160 000 rays per image.

D. Volume Rendering

The network outputs RGB values and volume densities for
multiple sample points along each ray. For each sample, the
NeRF model is queried to obtain the corresponding color
and density, after which volume rendering techniques are
applied to compute the final RGB image. This process involves
calculating alpha values based on density and inter-sample
distance, which are then used as weights to blend the RGB
values along the ray, ultimately forming the rendered image.

E. Model Architecture

Our model follows the architecture detailed in the original
paper, consisting of eight fully connected layers. A skip
connection is introduced by concatenating the original input
with the activation of the fifth layer. Following an additional
four fully connected layers, the network produces both the
sigma output and a feature map. This feature vector is then
concatenated with the positional encoding of the viewing
direction, γ(d), and processed through an extra fully connected
ReLU layer with 128 channels. Finally, a sigmoid-activated
layer outputs the emitted RGB radiance at position x for a
ray directed along d. Consistent with the original setup, the
positional encoding dimensions are set to 10 for the ray query
points and 4 for the ray directions. The overall architecture is
depicted in Figure 2.

Fig. 2. Network Architecture

F. Training Parameters

During training, rays are generated for all images in the
dataset. A random sample of 4096 rays (the batch size) is se-
lected from the complete set, ensuring that each batch contains
rays from multiple viewpoints, which helps prevent overfitting
to any single image. Training over 100 000 iterations required
roughly 24 hours per dataset, with Pytorch’s automatic mixed
precision enabled for memory efficiency. The hyperparameters
used for training NeRF are as follows:

• Learning Rate: 5× 10−4

• Optimizer: Adam
• Near bound (tnear): 2
• Far bound (tfar): 6
• Batch Size: 4096
• Number of Query Points per Ray: 192

G. Custom Dataset

Fig. 3. Colmap for Custom Dataset

III. RESULTS

The best performance was achieved at 95 000 iterations
for the LEGO dataset and 69 000 iterations for the SHIP
dataset. The evaluation of the trained model on the test set
is summarized below in terms of PSNR and SSIM:

1) LEGO:
• Average PSNR: 25.6451
• Average SSIM: 0.8939

2) SHIP:
• Average PSNR: 27.0990
• Average SSIM: 0.8414

3) SPIDEY:
• Average PSNR: 31.3224
• Average SSIM: 0.8715

Comparision of Ground Truth and NeRF Renderings are
given in the below tables.



TABLE I
COMPARISON OF GROUND TRUTH AND NERF RENDERINGS: LEGO

Ground Truth NeRF (with positional encoding) NeRF (without positional encoding)



TABLE II
COMPARISON OF GROUND TRUTH AND NERF RENDERINGS: SHIP

Ground Truth NeRF



TABLE III
COMPARISON OF GROUND TRUTH AND NERF RENDERINGS: SPIDEY

Ground Truth NeRF


	Introduction
	Methodology
	Volume Rendering with Radiance Fields
	Dataset
	Pixel To Ray
	Volume Rendering
	Model Architecture
	Training Parameters
	Custom Dataset

	Results

