Perception-Aware Model Predictive Control

Sumukh Porwal
Worcester Polytechnic Institute
Email: sporwal @wpi.edu

Abstract—I1 formulated a perception-aware model predictive
control (MPC) framework for quadrotors, which seamlessly inte-
grates control and planning to achieve both action and perception
objectives. This framework employs numerical optimization to
generate trajectories that adhere to system dynamics and re-
spect the platform’s control input constraints. Concurrently, it
optimizes perception objectives by enhancing the visibility of a
point of interest and reducing its velocity within the image plane,
ensuring robust and reliable sensing.

Balancing perception and action objectives is inherently chal-
lenging due to potential conflicts between their respective require-
ments. For instance, tracking a reference trajectory necessitates
quadrotor rotation to align thrust with the desired acceleration
direction, whereas the perception objective may prioritize mini-
mizing such rotations to maximize point-of-interest visibility. To
address these challenges, our approach utilizes a model-based
optimization framework that incorporates both perception and
action objectives while coupling them through system dynamics.

The proposed perception-aware MPC operates in a receding-
horizon manner by iteratively solving a nonlinear optimization
problem, ensuring dynamic adaptability and optimal perfor-
mance.

I. INTRODUCTION

Advancements in perception algorithms, the availability of
affordable cameras, and the enhanced computational capa-
bilities of compact computers have established vision-based
perception as the standard for onboard sensing in micro aerial
vehicles. Cameras offer several advantages over other sensors,
including reduced weight, cost, size, power consumption, and
an extensive field of view. Despite these benefits, vision-based
perception has notable limitations: it can be inconsistent and
its accuracy is highly sensitive to environmental factors (e.g.,
texture distribution, lighting conditions) and the robot’s motion
(e.g., motion blur, camera orientation, and distance from the
observed scene).

These constraints make it impractical to entirely replace
motion-capture systems with onboard vision, as camera motion
can degrade estimation quality and impose strict limits on a
robot’s agility. However, perception can be enhanced through
deliberate planning of robot motion that accounts for the
constraints and needs of onboard vision. For instance, when
navigating a narrow gap while relying on an onboard camera
for localization, it is essential to maintain continuous visibility
of the gap. Similarly, exploring an unfamiliar environment
necessitates orienting the camera toward texture-rich regions.

To fully exploit the agility of autonomous quadrotors, it is
imperative to create a synergy between perception and action
by treating them as a unified problem.

II. PROBLEM FORMULATION

The necessity of coupling perception and action becomes
evident when considering safety requirements, which rely on
accurate and reliable perception. The performance of vision-
based perception is highly susceptible to degradation caused
by camera motion. On one hand, excessive motion can pre-
vent the extraction of sufficiently accurate information from
images, resulting in issues such as motion blur or insufficient
texture in the scene. On the other hand, perception quality can
significantly improve when its constraints and requirements are
explicitly addressed, such as ensuring the visibility of highly
textured regions and minimizing motion blur. This calls for a
synergistic approach to perception and action.

Let x and u represent the state and input vectors of a robot,
respectively, with its dynamics governed by the differential
equation & = f(z,u). Let z denote the state vector of the
perception system (e.g., the projection of 3D points onto the
image plane) and o a vector of parameters characterizing the
perception system (e.g., the camera’s focal length or field of
view). The perception state z is coupled with the robot state
x and input u through the system dynamics, expressed as z =
fol@,u.0).

Action objectives can be quantified using an action cost
Lo (z,u), while perception objectives can be represented by
a perception cost L,(z). The joint optimization problem that
integrates perception and action can then be formulated as:

u

t
min/ ' [Lo(z,u) + Ly(2)] dt, (1)
t

subject to the constraints:

; 2
; 3)

where r(z,u, z) and h(z,u, z) denote equality and inequal-
ity constraints, respectively, that must be satisfied for both
perception and action. These constraints ensure the feasibility
of the solution while addressing the intertwined requirements
of perception and action.

III. ENVIRONMENT SETUP

In this section, I describe the simulation environment and
tools used to model, simulate, and solve the optimal control
problem for the quadrotor system. Specifically, I leverage the
CasADi framework for symbolic computation and the Acados
solver for efficient real-time optimization.

A. CasADi for Modeling and Symbolic Computation

CasADi is an open-source tool for numerical optimization,
symbolic computation, and automatic differentiation, which is
particularly suited for control and robotics applications. It pro-
vides a flexible interface for creating mathematical models and
solving optimization problems. For our quadrotor simulation,
CasADi plays a central role in defining the system dynamics,
constraints, and cost functions. The following steps outline
how CasADi is utilized:

1) System Dynamics Modeling: The dynamics of the
quadrotor are defined as a set of ordinary differential equations
(ODEs), which govern the evolution of the system’s state
variables over time. The quadrotor dynamics, as described
in Section 2, are implemented symbolically using CasADi.
Specifically:

« State vector x: Position pwg, velocity vwg, orientation

quaternion qwpg, and angular velocity Qp.

« Input vector u: Thrust vector ¢ and body angular velocity

inputs Q2 p.

The dynamics are formulated as:
x=Ff (Xa ll)

where f is a function that encodes the quadrotor’s translational
and rotational dynamics. CasADi’s symbolic capabilities en-
able a clean representation of f, including quaternion-based
rotations and external forces (e.g., gravity).

2) Cost Function Definition: To solve an optimal control
problem (OCP), I need to define a cost function that encodes
the desired objectives for the quadrotor. CasADi is used to
symbolically represent the cost function, which typically takes
the form:

ty

T= [tx(t),u(e)) dt + ox(ty)
to

where / is the running cost, penalizing deviations in state and

control inputs, and ¢ is the terminal cost. For our application:

o The running cost ¢ penalizes deviations from a desired
trajectory and control effort:

((x,u) = |lx — XrefHZ) + [Ju — uref”%iv

where () and R are weight matrices.
o The terminal cost ¢ ensures the quadrotor reaches a target
state at the end of the horizon.

CasADi’s automatic differentiation capabilities facilitate the
computation of gradients and Hessians required for optimiza-
tion solvers.

3) Constraints Definition: In addition to the dynamics, I
impose state and input constraints to ensure realistic behavior:

¢ State constraints: Bounds on position, velocity, and ori-
entation.
o Input constraints: Limits on thrust and angular velocity
inputs.
CasADi enables these constraints to be defined symbolically
and incorporated seamlessly into the optimization problem.

B. Acados for Real-Time Optimal Control

Acados is an open-source software package that provides
fast and reliable solvers for optimal control problems (OCPs).
It is specifically designed for real-time applications and is
well-suited for embedded systems, robotics, and aerospace
applications. Acados leverages high-performance optimization
algorithms, such as Sequential Quadratic Programming (SQP)
and Interior Point Methods (IPM), to solve nonlinear OCPs
efficiently.

1) Integration with CasADi: Acados integrates tightly with
CasADi, enabling the symbolic models (dynamics, costs, and
constraints) defined in CasADi to be exported and used
as inputs to the Acados solver. This workflow significantly
simplifies the transition from problem formulation to real-time
optimization. The steps include:

« Symbolic modeling of the system dynamics, cost func-
tion, and constraints in CasADi.
« Exporting the model in a format compatible with Acados.
« Configuring the solver settings in Acados, including:
— Discretization method: I use direct multiple shooting
with a time horizon discretized into N intervals.
— Solver algorithm: SQP-based solver for faster conver-
gence.
— Tolerances and maximum iterations: To balance accu-
racy and computational efficiency.
« Solving the optimal control problem using Acados.

2) Simulation Workflow: The simulation workflow com-
bines CasADi and Acados as follows:

o Define the quadrotor’s dynamics, cost function, and con-
straints symbolically using CasADi.

o Discretize the problem over a finite time horizon using
multiple shooting.

« Initialize the state and input trajectories.

e Solve the OCP using Acados to compute the optimal
control inputs.

o Simulate the system forward using the optimal control
inputs and update the state.

« Repeat the process in a receding horizon fashion for
Model Predictive Control (MPC).

This framework allows for efficient trajectory planning and
control of the quadrotor in both simulation and real-time
scenarios.

C. Simulation Results and Visualization

The combined use of CasADi and Acados enables accu-
rate simulation of the quadrotor dynamics while solving for
optimal trajectories in real-time. The simulation results are
visualized using Python, where:

o The state evolution (position, velocity, orientation) is
plotted over time.

o Control inputs (thrust and angular velocities) are visual-
ized to ensure feasibility.

« 3D trajectories of the quadrotor are displayed for quali-
tative evaluation.

These results confirm the efficacy of the proposed environ-
ment setup in achieving accurate and optimal control of the
quadrotor system.

IV. METHODOLOGY
A. Nomenclature

This study utilizes a world frame W with an orthonormal
basis {zw), yw, zw}. The quadrotor’s body frame B is also
orthonormal, with a basis {z3, y5, 25} Additionally, the robot
is equipped with a camera whose reference frame C has a basis
{z¢,yc, z¢}. Figure (1] illustrates these reference frames.

Fig. 1. A schematics representing the world frame W, the body frame B
and the camera frame C' [1]

Vectors are denoted in bold, with a prefix indicating the
frame of reference and a suffix specifying the origin and
endpoint. For instance, yypyyp represents the position of the
body frame B relative to the world frame WV, expressed in W.
If a vector lacks a prefix, it is assumed to be expressed in the
first frame mentioned in the suffix.

Quaternions are used to describe orientations, with a quater-
nion 9 = (Qu,4x,qy,q-) evolving over time as ¢ =
1A(w) - q. The skew-symmetric matrix A(w) for a vector
W = (Wy,wy,w,) " is defined as:

0 —w; —wy -—w;
Aw) = Wa 0 W, —wy
Wy —W, 0 Wy
W, Wy Wy 0

Quaternion-vector multiplication is represented by ®, denoting
a rotation of vector v by the rotation induced by q.

B. Quadrotor Dynamics

The position and orientation of the quadrotor’s body frame
B relative to the world frame W are given by pywg =
(pacapyvpz)T and qwgs = (quws > Gys QZ)T’ respectively. Lin-
ear velocity is represented by viyg = (vg,vy,v5)" in W,
while angular velocity Q2 = (wz,wy,wz)—r is expressed in
B. The thrust vector ¢ = (0,0,¢)" is mass-normalized, where
c= %, fi denotes the thrust of the i-th motor, and
m is the quadrotor mass.

The quadrotor’s dynamics are:

PWwsB = Vws, Vws = gw+aws®c,

where gyy = (0,0, —g) " is the gravity vector with g = 9.81
m/s2.
The system’s state vector x and input vector u are defined
as:
X = [pWB7VWB7qWB]Ta u= [Cvﬂ—lB—]T'

C. Perception Objectives

Let Wpy denote the 3D position of a landmark in W.
The camera’s extrinsic parameters are described by Tpe =
[PBec, ase]- The landmark’s coordinates in the camera frame
C are computed as:

cpPs = (Aws ® ase) ' @ (wpy — (aws @ Psc + Pwa)).-

Projection onto the image plane using the pinhole camera
model yields:

= f:z:cpfz o fycpfy

B Cpfz B Cpfz

where f, and f, are the focal lengths.

As previously mentioned, I aim to minimize the velocity
of the landmark’s projection onto the image plane. Assuming
the landmark is static, differentiating the projection equations
yields:

U 0 _fa:/p?z 0
s=|o| = fy/p?cz 0 0| (cpe X cbs)-
0 0 0 0

The term cpr is computed as:

. 1
cPbr = _§A(QC)CPf — CVwWC;,

where:

1
cvwe = (CIWBQBC)_1®<2A(QB)CIWB ® pPBC + VWB) ,

Qc =qec ' ® 0p.

D. Action Objectives

To achieve a desired trajectory, the quadrotor must account
for two primary objectives:

« The control input vector u(t) € R* consists of the thrust
and angular velocity components. Specifically, the inputs
include the collective thrust 7" and the angular velocities
Wz, Wy, and w, along the three principal axes. These
inputs directly influence the quadrotor’s translational and
rotational motions.

o The input vector u(¢) must remain within the bounds of
the actuator capabilities to ensure feasible operation.

o Due to the underactuated nature of the quadrotor, transla-
tional and rotational motions must be coupled to navigate
effectively in 3D space. The quadrotor’s orientation de-
termines the direction of thrust, which in turn controls its
position in the environment.

The trajectory planning must respect these constraints while

) 1
qws = iA(QB)'QWﬁnsuring task completion.

Position . Orientation (roll, pitch, yaw) Pol Projection Rate Thrust

— ol — s1_dot
s2_dot

5 — sdot | g

Projection Rate

-5
0 100 200 300 400
Time step

3D Trajectory

0 100 200 300 400
Time step

0 100 200 300 400

0 100 200 300 400
Time step Time step

Pol Projection

— s —— Reference Trajectory
2
o5 — s

L I

0 100 200 300 400

Time step
Linear Velocity

7 075
£
= 050
8025
2

0.00

0 100 200 300 400
Time step
Angular Velocity

— W
wy

— w

0 100 200 300 400
Time step

Fig. 2. Perception Aware MPC

V. RESULTS

The results in figure [2] demonstrate the quadrotor’s ability
to follow the desired reference trajectory while ensuring the
point of interest remains centered in the image plane. This is
validated through a detailed analysis of the quadrotor states,
thrust, and angular velocities.

A. Trajectory Tracking

The 3D Trajectory plot shows the path traversed by the
quadrotor (blue line) compared to the reference trajectory (red
line). The quadrotor starts at the designated Start position
(green dot) and successfully reaches the Goal position (blue
dot) while keeping the point of interest (orange dot) in
view. Despite the complexity of the trajectory, the quadrotor
maintains effective control and minimizes deviations.

B. Quadrotor States

« Position: The position plots for z, y, and z components
indicate smooth progression along the trajectory. The
z-position increases over time, while y and z remain
relatively constant, reflecting the desired motion.

o Orientation (Roll, Pitch, Yaw): The orientation quater-
nion components evolve consistently over time, showing
that the quadrotor adjusts its attitude to stabilize and
maintain focus on the point of interest.

o Linear Velocity: The velocity components (v, vy, v.)
reflect the translational dynamics. A peak in v,, highlights
forward motion, while v, and v, remain small, ensuring
precise movement along the trajectory.

o Angular Velocity: The angular velocities (wg, wy, w;)
demonstrate active control, with notable adjustments oc-
curring to keep the point of interest centered.

C. Point of Interest Tracking

The Point of Interest (Pol) Projection and Projection Rate
plots validate the image-plane behavior:

o The projection components (s1, S2) remain close to their
centered values, ensuring the point of interest stays near
the center of the image.

« The projection rates (s1, s2) reflect dynamic adjustments
in the quadrotor’s motion, with significant control activity
when corrections are needed.

D. Thrust and Control Inputs

The Thrust plot indicates that the control input remains
within acceptable bounds, ensuring smooth vertical stability.
Minimal variations in thrust reflect efficient control. The
angular velocity adjustments complement the thrust to achieve
the desired attitude and trajectory corrections.

E. Summary
The results clearly show that the quadrotor successfully:

1) Tracks the reference trajectory accurately.

2) Maintains the point of interest at the center of the image
plane.

3) Ensures smooth transitions of position, velocity, and
control inputs, demonstrating the effectiveness of the
implemented control strategy.

The integrated plots highlight the coordinated behavior of
position, velocity, orientation, thrust, and angular velocities,
validating the robustness and precision of the proposed frame-
work.

VI. CONCLUSION

In this project, I demonstrated a MPC for a quadrotor
tasked with tracking a desired trajectory while ensuring a static
point of interest remains centered in the image plane. Using a
combination of CasADi and Acados for simulation, the results
highlight the effectiveness of the proposed control strategy.
The quadrotor successfully achieved accurate trajectory track-
ing, maintained stable position and orientation, and ensured
minimal deviations in thrust and angular velocity throughout
the flight.

The accompanying visualizations of position, velocity, ori-
entation, and point of interest projections confirm the system’s
ability to handle the underactuated dynamics of the quadrotor.

REFERENCES

[1] D. Falanga, P. Foehn, P. Lu, and D. Scaramuzza, “Pampc: Perception-
aware model predictive control for quadrotors,” 2018. [Online]. Available:
https://arxiv.org/abs/1804.04811

https://arxiv.org/abs/1804.04811

	Introduction
	Problem Formulation
	Environment Setup
	CasADi for Modeling and Symbolic Computation
	System Dynamics Modeling
	Cost Function Definition
	Constraints Definition

	Acados for Real-Time Optimal Control
	Integration with CasADi
	Simulation Workflow

	Simulation Results and Visualization

	Methodology
	Nomenclature
	Quadrotor Dynamics
	Perception Objectives
	Action Objectives

	Results
	Trajectory Tracking
	Quadrotor States
	Point of Interest Tracking
	Thrust and Control Inputs
	Summary

	Conclusion
	References

