Buildings built in minutes - StIM
RBES549 Project 2

Sumukh Porwal, Piyush Thapar
MS Robotics Engineering
Worcester Polytechnic Institute
Email: sporwal@wpi.edu, pthapar@wpi.edu

Abstract—This report presents the results of implementing
a Structure from Motion (SfM) pipeline. The SfM pipeline
estimates the camera poses and 3D structure of a scene from
a set of 2D images by creating point clouds, which recreate the
scene in 3D.

I. PHASE 1: STRUCTURE FROM MOTION
A. Introduction

Structure from motion is a computer vision technique that
aims to recover the 3D structure of a scene from a set of 2D
images. The basic idea is to estimate the camera poses and 3D
points that best explain the observed 2D points in the images.
This is a challenging problem, as it requires solving for the
camera poses and 3D points simultaneously, and is sensitive
to noise and outliers. In this phase, we implemented a basic
structure from motion pipeline that estimates the camera poses
and 3D points from a set of 2D images. We begin this section
with the math and algorithms used in a basic SfM pipeline
for a single pair of images, and then extend it to multiple
images. We then discuss the challenges and limitations of the
basic pipeline, and propose a more robust and scalable pipeline
that addresses these issues. Finally, the results of the pipeline
applied to Unity Hall at WPI are presented.

B. Dataset

We are given with a set of 5 images of Unity Hall at WPI as
shown in fig. [T} using a Samsung S22 Ultra’s primary camera
at /1.8 aperture, ISO 50 and 1/500 sec shutter speed. The
camera is calibrated after resizing using a Radial-Tangential
model with 2 radial parameters and one tangential parameter
using the MATLAB R2022a’s Camera Calibrator Application
beforehand. The images provided are already distortioncor-
rected and resized to 800 x 600px.

Fig. 1. Dataset

C. Estimating the Fundamental Matrix

The first step in the Structure from Motion (SfM) pipeline
is to estimate the fundamental matrix. The fundamental matrix
describes the epipolar geometry between two images, relating

the points in one image to the corresponding epipolar lines in
the other image. This relationship is captured in the following
mathematicaly expression, refered to as the epipolar constraint:

/1T
x; Fx;=0

where x; and x| are the homogeneous coordinates of the cor-
responding points in the two images, and F is the fundamental
matrix. This equation is then expanded to the following form:

fir fie fis) =
[yl 1] [for fez fes| |yi| =0
far fa2 f33 1

which can be transformed into a the following linear equation:

! ! ! ! ! !
Ty Ty T wiry o wiyy o vio orp oyp 1

/ / / / / /
ImTy, TmYm Tm YmTy, YmYm Ym Ty Yy 1

We need at least 8 point correspondences to solve for equation
above, as each correspondence only contributes 1 contraint to
the system, as the epipolar constraint is a scalar equation.

To solve the equation we use singular value decomposition
(SVD) to find the least squares solution to the linear equation.
The fundamental matrix is then constructed from the least
squares solution, and the rank-2 constraint is enforced by
setting the smallest singular value to zero.

To increase the stability of the solution, the 8 points from
each image are normalized using basic normalization matrices,
T and T’ . Once the eight-point algorithm is applied to the
normalized points, the fundamental matrix is denormalized
using the following equation:

F =T TFT

It is important to note, however, that the eight-point algorithm
is sensitive to noise and requires a sufficient number of point
correspondences for accurate results. Additionally, it can be
affected by degenerate configurations, such as coplanar points
or degenerate camera motion. To solve these solutions one
more step is required. The resulting fundamental matrix can be

fi1
fa1
f31
fi2
f22
f32
fis
f23

| f33]

visualized by looking at the epipolar lines in the two images.
Epipolar lines are lines which pass though a feature point one
image and location of the other camera in that image. The
epipolar lines are shown in Figure [2]

Fig. 2. Epipolar lines in first 2 images

D. Match Outlier Rejection via RANSAC

To address the aforementioned issues with the naive 8-
point algorithm, we use the RANdom SAmple Consensus
(RANSAC) algorithm to reject outlier correspondences, and
thus obtain a more accurate estimate of the fundamental ma-
trix. RANSAC is an iterative algorithm that selects a random
subset of the data and fits a model to that subset, in our case a
random set of 8 correspondences. It then evaluates the model
on the remaining data, and the points that are consistent with
the model are considered inliers. This process is repeated for
a specified number of iterations, and the model with the most
inliers is chosen as the best estimate.

One aspect of the algorithm which was glossed over is the
evaluation of the model on the remaining data. The approach
is given in pseudo code below,

n=0;
for i = 1:M do
// Choose 8 correspondences, #; and & randomly
F = EstimateFundmentalMatrix(2,, »);
S =10
for j = 1:N do
if [#];F2s;|< ¢ then
| §=Su{j}
end
end
fn<|S|then
n=[S|
Sin=8
end

e

end

E. Estimate Essential Matrix from Fundamental Matrix

The next step of the SfM pipeline is to estimate the essential
matrix from the fundamental matrix. The essential matrix is
a 3 x 3 matrix that relates the corresponding points in two
images, assuming that the cameras obey the pinhole model.

It can be computed from the fundamental matrix using the
following relationship:

E = KTFK

Due to noise in the calculation of the fundamental matrix,
the essential matrix is not guaranteed to be of rank 2. To
enforce this constraint, we use singular value decomposition
to decompose the essential matrix into its constituent parts,
and then reconstruct it using the following equation:

1 0 0
E=U|0 1 o|VT
00 0

F. Estimate Camera Pose from Essential Matrix

Once the essential matrix has been estimated, the next step
is to estimate the camera pose. The essential matrix is a
representation of the relative pose between the two cameras,
and it can be decomposed into the rotation and translation
components. The decomposition of the essential matrix is
given by the following equation:

E = [t|xR

The decomposition of the essential matrix is not unique, and
will result in four possible camera poses given below,

1) C;=U(;,3) and Ry = UWVT

2) Cy = -U(:,3) and Ry = UWVT

3) C3=U(:,3) and Ry = UWTVT

4) Cy =-U(:,3) and Ry = UWTVT
Also if det(R) = —1, then the camera pose must be corrected
ie. C =—C and R=—R.

G. Triangulation Check for Cheirality Condition

To resolve this ambiguity and find a single camera pose, we
use the following method:

1) Linear Triangulation: With two camera poses (R;, C;)
and the corresponding 2D points in the images (z;, z;) we can
calulate X, or the world point of each correspondence. To find
a solution to the problem of triangulation, we begin with the
pinhole projection model:

3] =er 7]

where P is the projection matrix:

P = K[R]t]
which is equivalent to

AR

We stack the above equation for each camera pose and
its corresponding image point, and then solve for X using
singular value decomposition. The result of this process is
shown in Figure [3]

20 ~—

15 4

5 1 i
N0 N
LN

-5 4 I

20 -15 10 -5 0 5 10 15 20
Fig. 3. Possible World Points using first 2 camera pose

2) Enforce the cheirality condition: The cheirality condi-
tion is simply the condition that the 3D points are in front of
the camera. This is enforced by checking the sign of the depth
of the 3D points, and discarding the camera poses that do not
satisfy the condition. The cheirality condition is given by the
following equation:

R(:3)T(X-C)>0

After enforcing the cheirality condition the selected camera
pose is shown in Figure {]

25

Camera 1
Camera 2

207 CET,
15 4

N10 4

T T
-15 -10 -5 o 5 10 15

Fig. 4. Linear Triangulation

H. Non-Linear Triangulation

Given the linearly estimated 3D world points from the
previous step, we refined their locations to minimize the
reprojection error. The linear triangulation method minimizes
the algebraic error, but the reprojection error is a more geomet-
rically meaningful error that can be computed by measuring

the geometrix error between an image points and the world
point projected into its image plane. Since there are likely
nonlinearities in the camera model, this is a more accurate
method for estimating the 3D points. A comparison of the
projections between the non-linear and linear triangulation
methods is shown in Figure[5|and [6] The optimization function
is given below,

2 2

- Pi"X

- piTx
min w — =L
5 (w2

PiTXx

Fig. 5. Linear Reprojection

Fig. 6. Nonlinear Reprojection

Also the Linear and NonLinear Triangulation estimates are
shown in the Figure [7]
1. Perspective-n-Points

1) Linear Camera Pose Estimation: To extend this pipeline
to multiple images, we need to estimate the camera pose for

25

. Linear Triangulation
. « Non-Linear Triangulation
204 ¥, ; A cameral
A cameraz
15
.';_':I f
L e g
N 10 \W' bk o
IS
,! - -
5 e’
0 AR
=5 T T T T T
=15 -10 =5 1] 5 10 15

Fig. 7. Linear and NonLinear Triangulation

each image. This is accomplished using the Perspective-n-
Points (PnP) algorithm, which estimates a camera pose from a
set of 3D points and their corresponding 2D projections. The
PnP algorithm can take in n, hence the name, but we used n =
6 which allows the math to remain simple. PnP first consists
of forming a linear estimate of the camera pose using, formed

by transforming
X X
1]V

into the following form:

b1
P12
P13
P14
P21
D22
P23
P24
P31
P32
b33
| P34 |
and then stacking it n times for each point used in the linear
PnP. This is then solved using SVD, yielding the projection
matrix P. P is then decomposed into R, and t:

R=K 'P(;1:3)
t =K 'P(:,4)

X,Y, 7,1,0,0,0,0, —zX, —zY,—aZ, —x
OaOaO7O7X7Ya Z717 _yX7 _y}/v _yZ7 -y

which is then simplified:
U,D,V =SVD(R)
R=UV'
t=t/Dy;
Finally, if det(R) = —1, we flip the sign of of R and t.

2) PnP RANSAC: This process described above yields a
decent estimate of the camera pose, but is very sensitive to
noise and outliers. To address this the RANSAC algorithm
is applied, with 6 random points chosen each iteration, and
with inliers being determined using reprojection error. The
pseudocode is shown below

n=>0

for i = 1:M do

// Choose 6 correspondences, X and 7, randomly
[C R] = LinearPnP(X, &, K);

S=10

for j = I:N do

// Measure Reprojection error

(-25) (%)
e=|u-— = +|v— = ;
PIX PIX
if ¢ < ¢, then
| §=8U{j}

end

end

f n < |S| then
n=|8|;
Sin=8
end

end

e

J. Nonlinear PnP

While the linear PnP RANSAC algorithm is a good start, it
is not perfect. To address this, we use the LevenbergMarquardt
algorithm to refine the camera pose estimate. The Levenberg-
Marquardt algorithm is a non-linear optimization algorithm
that minimized a sum of squares of residuals. The residuals
for the algorithm are simply given by the difference between
the reprojected points and the true image points:

r=x—PX

which means that Levenberg-Marquardt is minizing the fol-
lowing cost function:

e 2 i\ 2
min (uj - i X7> + (Uj - 7P2J Xj)
T -
Ca i=1,J P?z Xj P?{ Xj
PT s

where X is the homogeneous representation of X. P;
each row of camera projection matrix, P which is computed
by P = KR[I3x3 — C] . A compact representation of the
rotation matrix using quaternion is a better choice to enforce
orthogonality of the rotation matrix, R = R(q) where ¢ is four
dimensional quaternion.,
The result of this process is shown in Figure [§]

Comparison of reprojected points between non-linear and
linear PnP for Camera 4.

25

4w
20 Lol
15 4 .
":’A g f
. "!.- b i -
N 10 A e
P T
- o -
54 - PostPnp o
A cameral B
A camera2 “}
0 Camera 3
A Camera 4 .
A cameras
=5 T T T T T
=15 -10 =5 1] 5 10 15

Fig. 8. Output from 5 different view of Unity Hall, without bundle adjustment

Fig. 9. Linear PnP Reprojection for Camera 4

Fig. 10. Nonlinear PnP Reprojection for Camera 4

2) Bundle Adjustment: Now, to reduce the projection error
simultaneously for all the 5 images using this visibility matrix.
Bundle adjustment takes input parameters related to camera
poses, 3D points, visibility, and intrinsic matrix and uses least
squares optimization to refine the camera poses and 3D points.

I J T\ 2 s

. PIX . P X
min S (-) (- 2
{Cuatio XY i o Py X PI"X

2

The function returns the optimized camera poses and 3D
points. This is shown in Figure [TI] which shows bundle
adjustment for all the camera views.

25

20

15

10 A

Pre Bundle Adjustment

Error

Linear reprojection 6.8634
Nonlinear reprojection | 6.8303
Linear PnP (1,3) 803.03
Nonlinear PnP (1,3) 726.12
Linear PnP (1,4) 19.27
Nonlinear PnP (1,4) 6.89
Linear PnP (1,5) 33.879
Nonlinear PnP (1,5) 4.501

The reprojection errors are listed in the above table

K. Visibility Matrix and Bundle Adjustment

1) Visibility Matrix: We created a visibility matrix for the
given number of cameras and total world points. The function
initializes the matrix with zeros and iterates over each world
point and camera to mark the visibility of the world point in
each camera.

(44 dd

Post Bundle Adjustment
Camera 1
Camera 2
Camera 3
Camera 4
Camera 5

o4
w

T T
-15 -10 =5

10 15 20

Fig. 11. Camera poses and World Coordinates after Bundle Adjustment

	Phase 1: Structure from Motion
	Introduction
	Dataset
	Estimating the Fundamental Matrix
	Match Outlier Rejection via RANSAC
	Estimate Essential Matrix from Fundamental Matrix
	Estimate Camera Pose from Essential Matrix
	Triangulation Check for Cheirality Condition
	Linear Triangulation
	Enforce the cheirality condition

	Non-Linear Triangulation
	Perspective-n-Points
	Linear Camera Pose Estimation
	PnP RANSAC

	Nonlinear PnP
	Visibility Matrix and Bundle Adjustment
	Visibility Matrix
	Bundle Adjustment

