Deep Reinforcement Learning-Based
Motion Planning for TurtleBot3

Sumukh Porwal, Piyush Thapar, Ameya Phadnis, Srikanth Natarajan
CS525: Reinforcement Learning
Worcester Polytechnic Institute
Robotics Engineering Department
{sporwal, pthapar, aphadnis, snatarajanl}@wpi.edu

Abstract—This work aims to develop an efficient motion plan-
ning system for the TurtleBot3 robot using Deep Reinforcement
Learning (DRL) techniques within a simulation environment. The
objective is to train the robot to navigate safely from an initial
position to a designated goal while effectively avoiding obstacles.
We leverage and compare multiple DRL algorithms, including
DDPG, PPO, TD3, and DQN, to analyze their effectiveness in
optimizing navigation performance. Special attention is given to
designing reward functions that encourage collision-free naviga-
tion and efficient path planning. The evaluation focuses on the
algorithms’ abilities to achieve smooth, stable trajectories and
effective obstacle avoidance.

Index Terms—Deep Reinforcement Learning, Motion Planning,
TurtleBot3, Robotics, DQN, PPO, TD3, DDPG.

I. LITERATURE REVIEW

Significant research has been done recently in the field of
reinforcement learning and its application to motion planning
in robotics. Traditional methods for mobile robot motion
planning often rely on techniques such as Rapidly-exploring
Random Trees (RRT) and Probabilistic Roadmaps (PRM).
While these methods have proven effective in structured en-
vironments, they may struggle in dynamic, unstructured, or
partially observable settings.

These shortcomings have led to research in several re-
inforcement learning-based motion planning techniques. For
instance:

e Luo et al. [I] proposed a robust planning method that
embeds an experience-based planner and self-imitation
learning to mitigate data collection issues.

e Bhuiyan et al. [2] suggest a Deep Reinforcement
Learning-based approach for industrial robotic manipu-
lators and demonstrate an improvement over traditional
techniques like RRT.

e Teheri et al. [3] demonstrate the use of various re-
inforcement learning-based techniques like DDPG and
PPO to perform successful motion planning for a robot
surrounded by obstacles.

These studies highlight the rising research in RL-based
methods for robot motion planning and their potential to solve
complex problems. Inspired by these works, we aim to apply
Deep-Reinforcement Learning techniques to motion planning
for a TurtleBot3 robot in simulation.

II. PROBLEM DEFINITION

In this project, we confront the challenge of mapless motion
planning for mobile ground robots, with the primary objective
to develop a robust translation function for determining the
next velocity vy of a robot based on its current state s;. The
state st encompasses several critical components, formalized
as:

Uy = f(l’typtavt—h@t, Oét)

Where Sensor Information x; consists of data from the robot’s
sensors to understand the environment, and Relative Target
Position pt denotes the location of the target relative to the
robot. The Previous Velocity v;_; indicates the robot’s last
recorded speed, aiding in stability. The Yaw Angle 6, specifies
the robot’s orientation, and the Rotation Degree «; is crucial
for aligning the robot with the target. Our goal is to model
these states into actionable insights, specifically to compute
the next velocity vy, facilitating agile and accurate navigation.

III. METHODOLOGY

A. Static Environment Setup

A customized simulation environment was created in
Gazebo as part of the setup, which includes static obstacles.
This environment spawns the TurtleBot3, and loads the re-
quired Gazebo world as shown in Figure [T] and

Fig. 1. Top view of the Gazebo World

— DQN optimizes the Bellman equation:
Yo =1+ max Q(8t41,0;0")

where 0 represents the policy network, and 6’ is the
target network.

— DDQN modifies the target calculation to decouple
action selection and evaluation, addressing overestima-
tion bias:

Y =T1¢ + 'yQ(sHl,argml?x Q(St+17a; 9)% 9,)

— The policy network () selects the action, while the tar-
get network (0”) evaluates it, leading to stable updates
and more accurate Q-value predictions.

o Model Architecture

Fig. 2. Orthographic view of the Gazebo World

B. State and Action Representation — The Q-network consists of fully connected layers to
o State: The input features, forming a 16-dimensional process state-action pairs:
state, include: * Input Layer: Encodes the state space into a 128-
- Laser Finding (10 Dimensions) - Represents sparse dimensional vector.
laser measurements. *x Hidden Layers: Two hidden layers, each with 128
— Past Action (2 Dimensions) - Linear velocity and neurons and ReLU activation.
Angular velocity * Output Layer: Produces Q-values for all possible
— Target Position in Robot Frame (2 Dimensions) actions.
- Relative distance and Relative angle (using polar — Weight initialization is done using Xavier uniform
coordinates) initialization for better convergence.
— Robot Yaw Angular (1 Dimension) - Indicates the « Hyperparameters

robot’s current yaw angle.

— Degrees to Face the Target (1 Dimension) - The
absolute difference between the yaw and the relative
angle to the target.

Episodes: 100,000

Episode Length: 2,000 steps

Discount Factor (v): 0.99

Epsilon Start: 1.0

Epsilon End: 0.05

Epsilon Decay: 0.995

Learning Rate: 0.00025

Batch Size: 256

Replay Buffer Size: 1,000,000

Target Update Frequency: 1,000 steps

o Action: The outputs, forming a 2-dimensional action,
consist of Linear Velocity and Angular Velocity.

LiDAR

Target ’ Velocity
-e "= Y .

P . X 1 3 — Loss Function: Smooth L1 Loss (Huber Loss)
Rotation ‘ — Optimizer: Adam

ag |1 .

o Reward Function
Environment Observations Agent Actions . . L. .
— The reward function incentivizes efficient and safe
Fig. 3. Overview navigation while penalizing collisions:

4400 if goal reached,
—400 if collision,
+1 if closer to goal,

C. DRL Algorithms

1) Deep Q-Network (DQN) and Double DON (DDQN): r(se,ae) =
In our project, I initially implemented the Deep Q-Network

(DQN) [4] algorithm to address the robotic navigation task. -1 if moving away.
However, limitations like overestimation bias and unstable — Additional heading alignment reward:

training motivated the transition to Double DQN (DDQN) .

[S], which provided improved performance through reduced Theading = MAX <1 _ M, _1) ,
overestimation and enhanced stability. Q

where the heading error is the angular deviation be-

o Algorithm Overview tween the robot’s orientation and the target direction.
— The DQN algorithm learns a Q-function to estimate
the expected cumulative reward for state-action pairs.

« Implementation Details
— Initialization: The DDQNAgent class initializes the

policy network, target network, and replay buffer. The
policy network is responsible for predicting Q-values
for actions in a given state, while the target network
is used to stabilize training by providing more stable
targets for the Bellman equation. The replay buffer
stores transitions of the form (s, a,r, s’, done) that the
agent experiences during training.

Action Space

The action for the robot is discrete and comprises
a constant linear velocity and one of five predefined
angular velocities. The action is defined as:

+x Linear Velocity (1 Dimension): Fixed at 0.12
meters per second.

* Angular Velocity (1 Dimension): Selected from a
discrete set of values [1.5,0.75,0.0,—0.75, —1.5]
radians per second.

The discrete action space allows the robot to execute
predefined angular velocity adjustments while main-
taining a constant linear velocity, enabling efficient and
predictable navigation.

Action Selection: The agent uses an e-greedy strategy
to balance exploration and exploitation. Initially, € is
set to 1 (100% exploration), encouraging the agent
to try random actions. Over time, e decays, allowing
the agent to exploit its learned knowledge more and
explore less.

Experience Replay: The agent stores transitions
(s,a,r,s’,done) in the replay buffer. During training,
random batches of transitions are sampled to train the
neural network. This helps break temporal correlations
and stabilize learning.

— Optimization:

* The policy network is updated by minimizing the
temporal difference (TD) error. The loss function
is the mean squared error (MSE) between the
predicted Q-values Q(s¢,a;;0) and the target Q-
values y;:

Loss = E[(y: — Q(st, at; 0))?).

The target Q-value is computed using the Bellman
equation. In DDQN, the policy network is used to
select the action, while the target network is used
to evaluate it, reducing overestimation bias.

* The target network is periodically synchronized
with the policy network to ensure that the target
network’s weights remain up-to-date, stabilizing
the learning process.

— Logging: Metrics such as loss, average rewards, and

success rate are tracked using the wandb tool, which
helps visualize and monitor training progress.

o Challenges and Solutions
— Overestimation in DQN: In standard DQN, the Q-

value for a state-action pair is computed using the

maximum Q-value for the next state, which can lead
to overestimation bias. This bias causes the Q-values
to be inflated, resulting in suboptimal policies.

* Solution: The DDQN algorithm was introduced
to decouple action selection and evaluation. The
policy network selects the action, while the target
network is used to evaluate it, reducing overesti-
mation bias.

— Exploration-Exploitation Tradeoff: At the start of
training, exploration is important to discover new ac-
tions, while exploitation is critical in later stages to
maximize rewards. Balancing these is a key challenge.

* Solution: The e-decay schedule is carefully tuned
to allow thorough exploration in the early episodes
and focus on exploitation as training progresses.
This helps the agent discover effective actions and
then refine its strategy.

— Stability Issues: Stability during training is a common
challenge in reinforcement learning. Frequent updates
to the Q-values and non-linearities in neural networks
can cause instability.

* Solution: Stability is improved by periodically
updating the target network and using experience
replay. The target network is updated less fre-
quently than the policy network, ensuring more
stable learning. Experience replay helps by break-
ing correlations in the training data and stabilizing
updates.

2) Proximal Policy Optimization (PPO): In our project, |
employed the Proximal Policy Optimization (PPO) algorithm,
a well-regarded reinforcement learning technique known for
its stability and efficacy in continuous control tasks [6].
PPO iteratively updates the policy to maximize the expected
cumulative reward, implementing a constraint to limit policy
changes and prevent large, abrupt deviations. This controlled
approach to policy updates ensures more stable training
progress, making PPO particularly suitable for our mapless
motion planning problem. In the Proximal Policy Optimization
(PPO) algorithm, the loss function is composed of two integral
components: the policy loss and the value loss. The policy
loss is crafted to modulate the updates made to the policy,
ensuring they remain modest and do not significantly diverge
from the current policy. This controlled adjustment is vital for
the stability of the training process, enabling a gradual and
steady improvement in policy performance. Mathematically,
the policy loss can be described as follows:

LCLIP(Q) —
E [min (r4(0) A¢, clip(r¢(0),1 — €, 1 + €) Ay)]
where 7,(0) = (sl s the likelihood ratio, A, is the
old (0t 15t
advantage, and € is a clipping parameter.
Here LCLIP(0) represents the clipped surrogate objective,
6 denotes the parameters of the policy, r;(6) is the probability

ratio of the new policy to the old policy, A; is the advantage
function, and € is a hyperparameter determining the extent
of allowed policy changes. The value loss is associated with
the critic network and is aimed at minimizing the difference
between the predicted value V(s;) and the actual discounted
cumulative reward R;. The value loss is calculated as:

LYT(0) = E[(V(s¢) — Re)?)

In my implementation of the Proximal Policy Optimization
(PPO) algorithm, the actor and critic networks are fundamental
components that facilitate the learning process. The actor
network is responsible for defining the policy, which specifies
the probability distribution of possible actions in a given state.
Conversely, the critic network provides an estimate of the
value of each state, essentially predicting the expected return
from that state. The training of the actor network is guided by
the policy loss, which helps in refining the policy to ensure
better decision-making in navigating the environment. On the
other hand, the critic network is trained to minimize the value
loss, aiming to enhance the accuracy of state value predictions.
This dual-network approach, where the actor and critic are
concurrently trained, is central to the efficiency of the PPO
algorithm. By iteratively updating both networks, our system
continuously improves in its ability to not only choose optimal
actions (via the actor) but also in evaluating the potential future
rewards of current states (via the critic). This collaborative
training mechanism is particularly effective in our application
of mapless motion planning, allowing for a more effective
navigation strategy to be developed by the algorithm.

« Action Space: The action for the robot is determined by
sampling from a Gaussian distribution parameterized by
the mean predicted by the actor network and a predefined
covariance matrix. The resulting action is a 2-dimensional
vector comprising:

— Linear Velocity (1 Dimension): The sampled value is
clipped to lie within the range [0, 1] meters per second.

— Angular Velocity (1 Dimension): The sampled value
is clipped to lie within the range [—1.0,1.0] radians
per second.

The clipping ensures that the robot’s motion remains
within realistic physical constraints, enabling smooth and
controlled navigation.

o Actor-Critic Architecture

— In my implementation, I have utilized simple neural
network architectures for both the actor and critic mod-
els, tailored to the needs of efficient robotic navigation.

— The actor model consists of three fully connected
layers. The input layer maps the observation space
to 128 neurons, followed by a hidden layer with 64
neurons. The final layer branches into two outputs:
one for linear velocity and another for angular velocity.
This design enables the model to independently predict
these two essential control parameters.

— The critic model, designed to estimate the state value,
follows a straightforward architecture. It features an
input layer mapping to 128 neurons, a 64-neuron
hidden layer, and a single output neuron that provides
the value estimate.

— Both models employ the ReLU activation function in
the intermediate layers to introduce non-linearity, facil-
itating better learning capabilities. In the actor model,
the linear velocity output is scaled using a sigmoid
function, while the angular velocity output is scaled
using a hyperbolic tangent (tanh) function, ensuring
the outputs align with realistic robotic constraints.

— Weight initialization for all layers in both models is
achieved using Xavier uniform initialization. This tech-
nique is applied to ensure the weights are well-scaled
at the start of training, promoting stable convergence.
Biases are initialized to zero to avoid introducing
unnecessary bias in the early stages of learning.

— This approach emphasizes simplicity and computa-
tional efficiency, providing a robust framework for
effective control policy learning without overcompli-
cating the model structure.

Hyperparameters

No. of Episodes Trained: 4,500
Episode Length: 400 steps
Batch Size: 4000 steps
Discount Factor (v): 0.99
Updates per Iteration: 50
Total Iterations: 270

Initial Covariance: 0.8
Minimum Covariance: 0.1
Covariance Decay: 0.95

- Learning Rate: 3 x 10~

— Clip (e): 0.2

— Critic Loss Function: MSE Loss
— Optimizer: Adam

Reward Function

— Our reward function is designed to encourage the agent
to move closer to the goal while maintaining an optimal
heading angle, penalizing collisions and rewarding goal
arrival. It combines dynamic distance and heading
angle rewards to achieve balanced behavior.

— The reward function is calculated as follows:

Tcollision if Ad < Co,
7)(st7 at) = N Tarrive if dt < Cg,

W4 * Tdistance T Wh * Theading ~ Otherwise.

where 74rive = 150 and rco1i5i0n = —100.
— The distance reward, 7gjsance, 1S based on the change
in distance to the goal:

Ad-k it Ad>0,
T'distance —
disnce Y NG -2k if Ad <0,

where Ad = d;_1 —d, k is a scaling factor, ¢, is near-
collision distance, 74, rive 1S granted when the agent is
within a critical distance c, to the target and d; is the
current distance to the goal.

— The heading reward, Theading, 1S computed based on the
heading error:

(0, — 0, + 180) mod 360) — 180|
180 ’

where 6, is the goal angle, 0, is the current yaw, and
the error is normalized between O and 1.

— The final reward is a weighted sum of 7gistance and
Theading» Where wg = 0.7 and wj, = 0.3 are the weights
for distance and heading rewards, respectively.

— This reward function effectively balances progress to-
ward the goal with alignment along the correct heading,
ensuring robust navigation while discouraging colli-
sions and promoting successful goal completion.

Theading = 1-

« Implementation Details

— Initialization: The PPO class initializes hyperparam-
eters such as the learning rate, clipping threshold,
and update frequency. Actor and critic networks are
instantiated with the respective policy and value func-
tion classes. The covariance matrix used for action
sampling is set to an initial variance of 0.8.

— Training Workflow: The training is performed via the
learn function, which iteratively:

* Collects trajectories using the rollout function.

* Computes the return-to-go and advantage esti-
mates.

* Updates the actor and critic networks using the
surrogate loss objectives.

* Saves the trained models periodically for check-
pointing.

— Rollout Procedure: The rollout function collects
observations, actions, rewards, and log-probabilities for
a batch of trajectories:

* Actions are sampled from a multivariate Gaussian
distribution parameterized by the actor network.

+* Rewards are accumulated, and episodes terminate
upon reaching the goal or hitting a predefined time
limit.

— Optimization and Logging: Each policy update in-
volves:

* Normalization of advantages to improve stability.

* Gradient computation and backpropagation for both
actor and critic networks.

* Logging of losses and performance metrics.

« Challenges and Solutions
— Balancing Exploration and Exploitation: Fine-tuning
the covariance matrix was essential to strike a bal-
ance between exploration and exploitation. This was
achieved through iterative testing and parameter ad-

justments to ensure the agent explores effectively while
still converging to optimal policies.

— Reward Function Adaptation: Since the reward func-
tion requirements differed across algorithms, conver-
gence for one algorithm did not imply convergence
for others. To address this, the reward functions were
carefully tailored and dynamically adjusted for each
algorithm, ensuring they aligned with the specific
learning objectives and behavior requirements.

— Handling High-Dimensional Observation Spaces:
The high-dimensional observation spaces typical of
TurtleBot navigation posed a challenge. This was miti-
gated by preprocessing the input data to reduce dimen-
sionality where possible and designing neural network
architectures capable of effectively learning from such
data while maintaining computational efficiency.

3) Deep Deterministic Policy Gradient (DDPG): Deep De-
terministic Policy Gradient (DDPG) is a model-free,off policy
RL algorithm, It is an advanced reinforcement learning algo-
rithm that extends the deterministic policy gradient apporoach
to handle continous action spaces effectively [7]. DDPG is
an actor-critic method that combines elements of Deep Q-
Networks(DQN) with deterministic policy gradient methods,
enabling it to learn a policy directly in high-dimensional action
spaces. DDPG was chosen for training the TurtleBot3 due
to its effectiveness in continuous action spaces, essential for
linear and angular velocity control. The DDPG algorithm was
implemented in ddpg.py file.

o Actor-Critic Architecture: The actor is a policy network
that directly outputs the optimal continuous action for a
given state. instead of searching through all possible ac-
tions(like traditional Q-learning),the actor parameterizes
the policy, which maps the state to an action. During
training ,it is updated using gradients provided by the
critic. [8]] the critic evaluates how good the action a
is for the given state s, and the actor adjusts itself to
maximize the expected Q-value. The critic is a value
function approximator that evaluates the quality of the
actions suggested by the actor. it estimates the Q-value,
it is trained using the Bellman equation to minimize
the temporal difference error. The actor depends on the
critic to evaluate its proposed actions. The critic evaluates
these actions using the Q-value, and its gradients are
used to improve the actor’s policy. The critic depends on
the actor to provide actions for its training, particularly
when calculating the target Q-value, Together they both
reinforce each other’s learning. Both actor and critic
utilizes separate neural networks actor network (to decide
actions) and the critic network (to evaluate actions). Actor
network consists of layer1:Fully connected layer with size
(state dim x 400), Layer2: Fully connected layer with size
(400 x 300), Layer3(output): Fully connected layer with
size (300 x action dim) followed by ReL.U, sigmoid and
tanh activation. Critic network consists of Layerl(state

processing): Fully connected layer with size (state dim x can lead to significant fluctuations in target Q-value

400), Layer 2(State+Action): Fully connected layer with estimates, causing divergent training. By updating the
size[(400+action dim)x 300] and Layer3(output): Fully target network slowly and smoothly,the agent receives
connected layer with size (300 x 1), outputs the Q-value. more consistent targets for computing the temporal
« Hyper Parameters: difference (TD) error, which stabilizes learning.

- Actor Learning Rate: 1 x 10~* — At the start of training, the target network is initialized
— Critic Learning Rate: 1 x 1073 with the same weights as the main network. During
— Discount Factor (vy): 0.99 each training step, after updating the main network
— Episodes: 1500 using the replay buffer, the target network’s weights are
- Soft Update Rate (7): 0.005 updated using the soft update rule. This ensures that
— Exploration Noise: 0.8 the target network evolves slowly over time, closely
— Noise Decay: 0.92 following the main network but with a lag that helps
— Steps per Episode: 1000 mitigate large oscillations.

- Replay Buffer Size: 1,000,000 — The replay buffer helps the agent learn efficiently by
— Batch Size: 128 providing diverse and de-correlated experiences for

training, while soft target updates stabilize the learning
process by ensuring smooth and consistent updates to
the target networks. Together, these mechanisms play
a vital role in of DDPG’s stability and efficiency.
action]0] = 0.2 - o(x) « Reward Function

— The reward function enhances efficient and safe navi-
gation while penalizing collisions:

o Action Space:

- Linear Velocity (action[0]): Scaled sigmoid activation
is applied, defined as:

where o(z) is the sigmoid function:

1
o(x) = 1+e= 4400 if goal reached,
This ensures the output lies in the range [0, 0.2]. r (50, a0) = —400 if collision,
— Angular Velocity (action[1]): Scaled tanh activation +1 if closer to goal,
is applied, defined as: -1 if moving away.
action[1] = 0.5 - tanh(x) - Additional heading alignment reward:

where tanh(z) is the hyperbolic tangent function:

Heading error 1)
T Y Y

Theading = IMax <]- -
et — =7

et 4 e %

tanh(z) = where the Heading error is the angular deviation be-

tween the robot’s orientation and the target direction.

This ensures the output lies in the range [—0.5,0.5]. Implementation:

The actor network outputs both values and concatenates
them to represent the robot’s linear and angular velocities.

« Replay Buffer: The replay buffer stabilizes training and
improves learning efficiency by:

— General working: In the DDPG algorithm, the agent
starts in an initial state within the environment, with
the goal position and state variables initialized. The
actor network predicts a continuous action based on
the current state, which is augmented with exploration
noise to encourage discovery of better policies. This
action is executed in the environment, leading to a new
state, a reward signal, and a flag indicating whether
the episode has ended (e.g., reaching the goal or
colliding with an obstacle). The resulting transition,
comprising the current state, action, reward, next state,
and termination flag, is stored in a replay buffer, which
holds past experiences for training. When sufficient
samples are available, the algorithm samples a batch
from the replay buffer to train the networks. The critic

— Storing transitions from interactions with the environ-
ment in the form of tuple. Allowing the agent to learn
from a diverse set of experiences by sampling random
mini-batches, breaking correlations in sequential data.

— During each interaction with the environment, the
agent’s experience is stored in the replay buffer. When
the buffer reaches its maximum capacity, the oldest ex-
periences are discarded to make room for new ones. At
each training step, a random mini-batch of experiences
is sampled from the buffer. These batches are used to
compute loss functions and update the agent’s network.

o Soft Target Updates: Soft target updates refer to a network is updated by minimizing the error between
method of updating target network parameters gradually its predicted Q-values and target Q-values, computed
by blending the parameters of the current network with using the target networks [9]. The actor network is
those of the target network. updated to maximize the Q-values predicted by the
— The purpose of soft target updates is to ensure stability critic, encouraging actions that yield higher cumulative

during learning. abrupt changes in the target network rewards. Soft target updates incrementally adjust the

target networks toward the main networks, ensuring
stability during training. The episode ends if the agent
reaches the goal, receiving a large reward, or collides
with an obstacle, incurring a significant penalty. After
each episode, the environment resets, and metrics such
as total rewards and success rates are logged to monitor
progress. This cycle repeats, enabling the agent to
gradually learn an optimal policy through continuous
interaction and feedback.

— Initialization: Utilizes a deque structure with a fixed
maximum size (BUFFER_SIZE) to store transitions.

— Adding Experiences: Stores each interaction tuple
(s,a,r,s',d) in the buffer during the agent’s explo-
ration.

— Sampling: Retrieves a random batch of BATCH_SIZE
experiences for training to ensure decorrelated data and
stable updates.

— Training Loop Steps:

* Sample a mini-batch of experiences from the replay
buffer.

* Compute the target Q-value using the target net-
works:

Qtarget =7+ (1 — done) - Ql(slv Wl(s/))

where Q' and 7’ are the target critic and actor
networks.

* Update the critic network by minimizing the Mean
Squared Error (MSE) between the predicted Q-
value and the target Q-value.

x Update the actor network by maximizing the ex-
pected Q-value for the actions it predicts:

VoJ = E[V.Q(s,a)Vem(s)]
* Perform soft updates for the target networks:
0 710+ (1—7)0

where 7 is a small constant controlling the update
rate.

— Implementation Details

* Critic Update: The critic computes the Q-value
for each state-action pair and minimizes the error
against the target Q-value, ensuring the predicted
Q-value aligns with the expected rewards.

* Actor Update: The actor maximizes the Q-value
for the actions it predicts, adjusting its parameters
to ensure optimal decisions.

x Target Network Updates: Smooth updates of tar-
get networks reduce instability and prevent sudden
changes in the policy.

4) Twin Delayed Deep Deterministic Policy Gradient
(TD3): Twin Delayed Deep Deterministic Policy Gradient
(TD3) is a state-of-the-art algorithm for continuous control
tasks, designed to address key challenges like overestimation
bias and instability in Deep Reinforcement Learning (DRL)

[10]. TD3 builds on the foundation of the Deep Deterministic
Policy Gradient (DDPG) algorithm and introduces three major
improvements: twin Q-networks, delayed policy updates,
and target policy smoothing. The algorithm involves two
critic networks (Q-networks) to estimate the value of state-
action pairs, where the smaller value between the two is used
to reduce overestimation errors. The actor-network, which
outputs the deterministic action, is updated less frequently
than the critic networks to enhance stability. Additionally, TD3
employs target policy smoothing by adding noise to the target
action during updates, which makes the algorithm more robust
to minor deviations and prevents policy exploitation of value
function errors. The training process consists of interacting
with the environment to collect experience tuples, storing them
in a replay buffer, and using mini-batches from this buffer
to update the networks. TD3 effectively learns efficient and
stable policies for complex continuous control problems by
iteratively improving the policy and value estimates through
gradient-based optimization.

This algorithm has been adapted to train a TurtleBot for au-
tonomous navigation in a confined room, focusing on reaching
a target position while avoiding obstacles. The implementation
details for TurtleBot Navigation are given below:

« Reward System: The reward system incentivizes the
TurtleBot to reach its goal efficiently and penalizes un-
desirable behaviors, such as collisions. The following
reward function was used in training the TD3 agent:

Tcollision if Ad < co,
T(St7 at) = § Tarrive if d; < Cg,
Wq * Tdistance Otherwise.
Wherev Tcollision = —100 and Tarrive = 500

This reward function has the following features :
— Collision Penalty:

* If the robot’s distance to the nearest obstacle,
denoted as Ad, falls below a critical threshold c,,
the robot is penalized with rcgpision-

x This term heavily discourages the robot from col-
liding with obstacles, ensuring safety during navi-
gation.

— Target Arrival Reward:

x If the robot’s current distance to the goal, d,
becomes less than a specified goal threshold cg,
it receives a positive reward 7yyive-

x This term incentivizes the robot to successfully
navigate and reach its designated target position.

— Continuous Guidance Reward:

* For all other scenarios, the reward is computed
as the weighted value of the Distance Component
(wq - Tdistance)- This term rewards the robot for
moving closer to the target. It is proportional to
the improvement in the relative distance to the
goal (e.g., the difference between the previous and
current distances). In our setup, we have kept the

value of wy as 500, with which we could attain
good results.
Action Space: The TurtleBot’s action space consists of
two continuous actions:
— Linear Velocity (v,): Ranges from —0.5 to 0.5 meters
per second.
— Angular Velocity (w,): Ranges from —0.5 to 0.5 radians
per second.

The actor network outputs values in the range [—1, 1],
which are scaled and clamped to match the required
action bounds:

v, = 0.5 X output, w, = 0.5 X output.

Neural Network Architecture:

Actor Network:

— Input Layer: Takes the 16-dimensional state vector as
input.

— Hidden Layers: Two fully connected layers with 400
and 300 neurons, respectively, using ReLU activation
functions.

— Output Layer: A fully connected layer with 2 outputs
(one for each action), followed by a tanh activation
function to constrain the outputs to [—1, 1].

— Scaling: The output is scaled to the action ranges
[—0.5,0.5].

Critic Network:

— Input Layer: Takes a concatenated vector of the 16-
dimensional state and 2-dimensional action as input.

— Hidden Layers: Two fully connected layers with 400
and 300 neurons, respectively, using ReLLU activation
functions.

— Output Layer: A single neuron outputting the scalar
Q-value.

Two critic networks (1 and ()2) are used to estimate Q-
values, and the minimum of the two is selected to reduce
overestimation bias.

Training Process:

Critic Update:

ﬁcritic - MSE(Q(Sv (1), Qtargel)

The target Q-value is computed using the minimum of
the two critics:

Qureet = r + (1 — done) - min(Q’ (s, a’), Q5(s", a’)).

Actor Update: The actor is updated to maximize the
expected Q-value:

Lactor = 7E[Q1 (57 7'('(5))]

Target Policy Smoothing: Gaussian noise is added to the
target actions during training:

a =7'(s") + N(0,0).

Actions are clamped to ensure they remain within bounds.

Target Network Updates: Soft updates are performed to
stabilize learning:

atarget =70+ (1 - T)etarget-

o Advantages of the Implementation:

— Efficient Data Processing: Streamlined LiDAR data
reduces state dimensionality while prioritizing relevant
information for safe navigation.

— Custom Reward System: Encourages efficient and goal-
oriented behavior while penalizing collisions.

— Robust Learning: TD3’s enhancements (dual critics,
target smoothing, and delayed updates) ensure stable
and reliable learning for continuous control tasks.

— Scalable Framework: Modular implementation allows
easy integration of additional sensors or features if
needed.

« Shortcomings: While the TD3 algorithm is robust and
effective, the following limitations arise in the context of
this TurtleBot implementation:

— Sample Inefficiency: TD3 requires a large number of
interactions with the environment to learn effectively,
which can be time-consuming in real-world robotics or
high-fidelity simulators like Gazebo.

— Sparse Rewards: The reward system may lead to sparse
feedback in situations where the TurtleBot moves but
does not significantly reduce the distance to the target.
This can slow down learning.

— Exploration Challenges: Gaussian noise may not al-
ways suffice to promote exploration in highly complex
or cluttered environments, potentially leading to local
optima.

— Action Smoothness: While TD3 ensures bounded ac-
tions, noise addition may lead to abrupt changes in
linear or angular velocity. Such jerky movements could
destabilize the robot in certain scenarios.

— Computational Overhead: Training neural networks
(actor and critics) frequently and maintaining dual crit-
ics doubles the computational requirements compared
to simpler algorithms.

« Hyperparameters:

Learning Rate: 3 x 104
Discount Factor (v): 0.99

Soft Update Rate (7): 0.005
Policy Noise: 0.2

Noise Clipping: 0.5

Policy Update Frequency: 2
Replay Buffer Size: 1,000, 000
Batch Size: 256

Episodes: 4000

Overall, the TD3 algorithm was effectively customized for
TurtleBot navigation using a carefully designed state repre-
sentation, LiDAR preprocessing, reward system, and action
space. This implementation ensures efficient training and ro-
bust navigation, enabling the TurtleBot to navigate complex

environments and reach its targets safely while avoiding ob-
stacles.

IV. SIMULATION

The training of our model was conducted in virtual en-
vironments, using the Robot Operating System (ROS2)
combined with the Gazebo simulator. These platforms
provided a realistic and customizable setting for the experi-
ments.

TurtleBots Burger

360° LiIDAR for SLAM & Navigation

Scalable Structure

Single Board Computer
(Raspberry Pi)

OpenCR
(32-bit ARM Cortex®-M7)

DYNAMIXEL x 2 for
Wheels

Sprocket Wheels for
Tire and Caterpillar

Li-Po Battery

Fig. 4. The structure of Turtlebot3 robot

As shown in figure [I] We conducted our experiments in
a complex environment. Environment was simulated within
a 5 x 5 square meter area, enclosed by walls. The complex
environment was additionally populated with obstacles strate-
gically placed to challenge the navigation capabilities of our
robot. Throughout the experiments, we utilized the Turtlebot
as the robotic platform for these trials (Figure [).
In Figure [5] the agent interacts with the Gazebo environment.
Following initialization, the agent selects an action a to interact
with the environment. As the agent progresses, it checks for

Observation s

Reset
Environment

Generate random
target

Fig. 5. The flowchart of partial DRL environment

collisions or reaching the maximum time step, indicated by the
Boolean flag done. If done is true, the environment resets,
providing the current reward r, the next state s’, and the done
flag.

If done is false, and the agent has reached the target position,
another target position is generated, returning (r, s, done). If
the target position has not been reached, it returns (r, s’, done)
directly. This process continues until the maximum time step
is reached, with the collected data (s,a,r,s’,done) utilized
for DRL algorithm training.

For each training episode, the target’s position was randomized
within the environment, ensuring it was placed away from
obstacles to prevent immediate collisions. This approach of
random initialization was vital for training the model to adapt
to a wide range of navigation scenarios, enhancing its ability
to operate effectively in varied environments.

The training for all the DRL algorithms was conducted on
our Laptops equipped with NVIDIA GPUs to expedite
computations, particularly for training the neural networks.
The implementation of the neural networks leveraged the
PyTorch library, known for its flexibility and efficiency
in deep learning applications. PyTorch’s dynamic computa-
tional graph facilitated efficient experimentation and debug-
ging throughout the development process.

LiDAR Data Preprocessing: To enhance navigation in
complex environments, raw LiDAR sensor data is prepro-
cessed to condense information and prioritize computational
efficiency. This optimizes decision-making for the navigation
task. The LiDAR data processing approach is given below:

o Input Data: The LiDAR sensor provides 360 distance
measurements of the robot’s surroundings.

o Batching: These measurements are divided into 10
batches, with each batch containing 3 consecutive points.

e Minimum Distance Selection: Within each batch, the
minimum distance is selected, representing the closest
obstacle in the robot’s field of view.

o Output: This process results in 10 streamlined observa-
tions that summarize the most relevant information for
navigation.

This preprocessing reduces the data dimensionality, prior-
itizes actionable insights (i.e., nearest obstacles), and mini-
mizes computational overhead. The streamlined LiDAR data
improves the efficiency of decision-making by focusing on
relevant environmental features critical for safe navigation.

V. RESULTS

1) Deep O-Learning (DON): The performance of the robot
trained using Deep Q-Learning (DQN) was evaluated in static
environments to assess its learned behavior under varying
conditions. Two scenarios are described below:

o Reward Improvement: The figure [6] below shows the
evolution of the moving average reward (over 100
episodes) during training. The steady increase in rewards
highlights the effectiveness of DDQN in improving policy

1250

1000

Moving Average Reward

performance. The highest reward achieved was approx-
imately 1610 at 1000 episodes, showcasing successful
convergence of the training process.

Episode vs Moving Average Reward

————— Moving Average Reward .
1500 ‘

@«
2
3

N
I
3

,,,,,

o

e

0 100 200 300 400 500 600 700 800 900 1000 1100 1200 1300
Episodes

Fig. 6. Reward VS Iterations (DDQN)

« Path Planning Example: The figure [/| demonstrates a
specific test case where the robot starts at (—2,—2)
and navigates to the goal at (1.8,0). Unlike the PPO
planner, which follows a Euclidean trajectory, the DDQN
planner follows a more grid-like trajectory, resembling a
Manhattan path. This behavior indicates that DDQN pri-
oritizes discrete directional transitions, which is effective
in environments with structured obstacles.

\
e

]
]
.L
]
l,
l

Fig. 7. Example of Autonomous Robot Navigation using DDQN

« Accuracy Assessment: The DDQN agent was tested over
100 episodes with random goal placements, achieving a
success rate of 85%, a significant improvement compared
to the 50% accuracy achieved with the standard DQN.
This demonstrates the effectiveness of DDQN in mitigat-
ing overestimation bias and improving decision-making
in complex navigation tasks.

« Discussion: The high success rate and the convergence
of rewards emphasize the strength of DDQN in handling

challenging navigation scenarios. The observed trajectory
pattern suggests that DDQN may favor structured plan-
ning in grid-like spaces, which could be advantageous for
certain environments. While the performance surpasses
DQN, future work can explore enhancements to the
reward structure and adapt the algorithm for multi-agent
or dynamic obstacle settings.

2) Proximal Policy Optimization (PP0O): The results ob-
tained from the Proximal Policy Optimization (PPO) algorithm
demonstrate its efficiency in training the TurtleBot to navigate
through a cluttered environment while avoiding obstacles and
reaching the goal.

« Reward Improvement: The figure[§|below illustrates the

evolution of cumulative rewards over training iterations.
The steady increase in rewards highlights the agent’s
improved performance as it learns to optimize its policy.
The eventual plateau suggests that the agent converged to
an optimal behavior for the given environment.

Reward vs Iterations

200 ' ‘ '
| \
o H' W ﬂl /w “M‘H \“”‘Av‘ ”Wn Www‘\ “”‘ \/“"‘\‘ﬁ/ U i”mhw\'\\”ﬂ\mf\"w“‘ fN‘\ MJ\'W
V J V

100 N “ \‘

Reward

50

-s50{ |

0 50 100 150 200 250
Iterations

Fig. 8. Reward VS Iterations (PPO)

o Path Planning Example: The figure [J] showcases a
specific test case where the robot is initially spawned at
(—2,—2) and successfully navigates to the goal located

t (1.8,0) while avoiding obstacles. This case visually
demonstrates the effectiveness of PPO in generating safe
and efficient trajectories in a dynamic environment.

« Accuracy Assessment: To evaluate the robustness of the
PPO algorithm, the agent was tested over 100 episodes
with random goal placements. The agent achieved a suc-
cess rate of 88%, demonstrating its ability to generalize
across different scenarios and efficiently navigate to its
target.

o Discussion: The high success rate and the observed
convergence of rewards highlight the strength of PPO
in handling complex navigation tasks. However, the per-
formance could vary depending on the distribution of
obstacles, the initialization of weights, and the reward
function parameters. Future improvements may focus on
adapting the algorithm for environments with dynamic
obstacles or multi-agent settings.

3) DDPG: The results obtained from Deep Deterministic
Policy Gradient (DDPG) algorithm shows its efficiency in

Fig. 9. Example of Autonomous Robot Navigation using PPO

training the TurtleBot to navigate through a environment to
reach the goal while avoiding obstacles. DDPG was success-
fully able to learn a policy that helped the robot to navigate
toward the goal.

e

Fig. 11. Example of turtlebot3 Navigation using DDPG

agent achieved a success rate of 71%, demonstrating
its ability to generalize the behavior across different
scenarios and efficiently navigate to the goal.

« Discussion: The Performance metric - success rate shows

« Reward Improvement: The figure shows the evo-
lution of rewards over episode. The steady increase in
rewards highlights the agent’s improved performance as
it learns to optimize its policy. And the steady graph at the
end indicates that the agent performs the optimal actions
for the given environment.

Episode vs Reward

—— 50-Episode Moving Average

0 200 400 600 800 1000 1200 1400
Episode

Fig. 10. Reward VS Episode

« Path Planning Example: The figure [T1] shows a specific
test case where the robot is initially spawned at (—2,0)
and successfully navigates to the goal located at (1.8,0)
while avoiding obstacles. This case visually demonstrates
the effectiveness of DDPG in generating safe and efficient
trajectories in the given custom environment.

o Accuracy Assessment: To evaluate the Performance and
efficiency of the DDPG algorithm, the agent was tested
over 100 episodes with random goal placements. The

the potential of DDPG in handling navigation tasks under
a given environment. However, the performance could be
affected depending on the distribution of obstacles, the
environment, the initialization of weights, and the reward
function. Future improvements may focus on adapting
this algorithm for environments with dynamic obstacles.

4) TD3: We trained the agent for the given simulation
configurations and hyperparameters and observed its behavior.
At the end of the training cycle, we observed that the TD3 al-
gorithm was successfully able to learn a policy that helped the
Turtlebot navigate toward the goal. The following observations
and inferences were made after training and testing the model:

« Reward Improvement: Figure [12| shown below demon-
strates the effectiveness of the TD3 algorithm in learning
the desired policy. As we can see from the graph, over
the span of the episodes, the agent is able to attain a
high cumulative reward, which then eventually stabilizes,
which denotes that the agent has converged at the optimal
cumulative reward point.

« Path Planning Example: For testing the trained model,
we utilized the same environment, with the Turtlebot
starting the navigation task at coordinates (—2,—2),
and moving towards a goal position of (1.8,0). The
Turtlebot was successfully able to navigate towards this
goal and avoid the obstacles. The trajectory behavior can
be observed in Figure [I3] As seen in the figure, the
Turtlebot adapts a trajectory directed towards the goal
and accordingly avoids obstacles to reach the goal safely.

o Accuracy Assessment: To evaluate the overall accuracy

Average Reward vs. Number of Episodes

1400 { — Average Reward

1200

1000

800

600

Average Reward

400

200

-200

0 500 1000 1500 2000 2500 3000 3500 4000
Episode

Fig. 12. Average Reward vs Number of Episodes

Fig. 13. Example of Autonomous Robot Navigation using TD3

of the algorithm, the agent was tested over 100 episodes
with random goal placement. The agent achieved a suc-
cess rate of 75%, which shows that the agent was effec-
tively able to learn how to navigate in the environment
and reach the goal in various scenarios, hence learning a
generalized behavior.

« Discussion: The high success rate and consistent reward
convergence underscore TD3’s effectiveness in tackling
complex navigation challenges. Nevertheless, its perfor-
mance may depend on factors such as obstacle distri-
bution, weight initialization, and reward function pa-
rameters. Future enhancements could aim to refine the
algorithm for environments with dynamic obstacles or
multi-agent scenarios.

VI. CONCLUSION

In this project, we implemented and evaluated four rein-
forcement learning algorithms—Proximal Policy Optimiza-
tion (PPO), Deep Deterministic Policy Gradient (DDPG),
Twin Delayed Deep Deterministic Policy Gradient (TD3),

and Deep Q-Network (DQN)—for autonomous navigation in
a TurtleBot environment.

Il Accuracy (in %)
100

80

60

40

20

0

PPO DDPG TD3

DON

Fig. 14. Accuracy of DRL Algorithms

Each algorithm was assessed based on its ability to navigate
the robot to randomly spawned goal locations while avoiding
obstacles. The results were measured over 100 test episodes,
and the accuracy of each algorithm was recorded as follows:

« Proximal Policy Optimization (PPO): 88%

o Deep Q-Network (DQN): 84%

« Deep Deterministic Policy Gradient (DDPG): 71%

o Twin Delayed Deep Deterministic Policy Gradient
(TD3): 75%

Among the tested algorithms, PPO achieved the highest ac-
curacy (88%), showcasing its robustness and efficiency in nav-
igating complex environments with continuous action spaces.
DQN followed closely with an accuracy of 84%, demon-
strating its effectiveness in discrete action spaces. However,
DDPG and TD3 showed relatively lower accuracies, which
can be attributed to their sensitivity to hyperparameter tuning
and challenges in managing exploration in high-dimensional
spaces.

The results highlight the trade-offs between policy-based
and value-based methods for robotic navigation tasks. While
PPO and DQN performed well overall, they have different
strengths—PPO excels in continuous control problems, while
DQN is suitable for tasks with discrete actions. On the other
hand, DDPG and TD3, despite being designed for continu-
ous spaces, require careful tuning and can underperform in
environments with significant noise or variability.

These findings suggest that the choice of algorithm depends
on the specific requirements of the task, such as the nature of
the action space, the complexity of the environment, and the
computational resources available.

[1]

[2]

[3]
[4]

[5]
[6]

[8]

[9]

[10]

(11]

[12]

[13]

[14]

REFERENCES

S. Luo and L. Schomaker, “Reinforcement learning in robotic motion
planning by combined experience-based planning and self-imitation
learning,” 2023.

T. Bhuiyan, L. Kistner, Y. Hu, B. Kutschank, and J. Lambrecht, “Deep-
reinforcement-learning-based path planning for industrial robots using
distance sensors as observation,” 2023.

H. Taheri, S. R. Hosseini, and M. A. Nekoui, “Deep reinforcement
learning with enhanced ppo for safe mobile robot navigation,” 2024.
V. Mnih, K. Kavukcuoglu, D. Silver, A. Graves, I. Antonoglou, D. Wier-
stra, and M. Riedmiller, “Playing atari with deep reinforcement learn-
ing,” 2013.

H. van Hasselt, A. Guez, and D. Silver, “Deep reinforcement learning
with double g-learning,” 2015.

J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and O. Klimoyv,
“Proximal policy optimization algorithms,” 2017.

H. Tan, “Reinforcement learning with deep deterministic policy gradi-
ent,” in 2021 International Conference on Artificial Intelligence, Big
Data and Algorithms (CAIBDA), pp. 82-85, 2021.

T. Tiong, I. Saad, K. T. K. Teo, and H. b. Lago, “Deep reinforcement
learning with robust deep deterministic policy gradient,” in 2020 2nd
International Conference on Electrical, Control and Instrumentation
Engineering (ICECIE), pp. 1-5, 2020.

Y. Dong and X. Zou, “Mobile robot path planning based on im-
proved ddpg reinforcement learning algorithm,” in 2020 [EEE 1ith
International Conference on Software Engineering and Service Science
(ICSESS), pp. 52-56, 2020.

S. Fujimoto, H. van Hoof, and D. Meger, “Addressing function approx-
imation error in actor-critic methods,” 2018.

S. Macenski, T. Foote, B. Gerkey, C. Lalancette, and W. Woodall, “Robot
operating system 2: Design, architecture, and uses in the wild,” Science
Robotics, vol. 7, no. 66, p. eabm6074, 2022.

N. Koenig and A. Howard, “Design and use paradigms for gazebo, an
open-source multi-robot simulator,” in IEEE/RSJ International Confer-
ence on Intelligent Robots and Systems, (Sendai, Japan), pp. 2149-2154,
Sep 2004.

J. Nickolls, I. Buck, M. Garland, and K. Skadron, “Scalable parallel pro-
gramming with cuda,” in ACM SIGGRAPH 2008 Classes, SIGGRAPH
08, (New York, NY, USA), Association for Computing Machinery,
2008.

A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan,
T. Killeen, Z. Lin, N. Gimelshein, L. Antiga, A. Desmaison, A. Kopf,
E. Yang, Z. DeVito, M. Raison, A. Tejani, S. Chilamkurthy, B. Steiner,
L. Fang, J. Bai, and S. Chintala, “Pytorch: An imperative style, high-
performance deep learning library,” 2019.

APPENDIX

1) Path planning video using DDQN model. DDQN.mp4
2) Path planning video using PPO model. PPO.mp4

3) Path planning video using DDPG model. DDPG.mp4
4) Path planning video using TD3 model. TD3.mp4

5) Zip file of code can be found here. Code

https://wpi0-my.sharepoint.com/:v:/g/personal/pthapar_wpi_edu/EZ10QsW32IZKgaFGAyUUNCgBJDbhZtcDgi3mTBXPgSt21Q?nav=eyJyZWZlcnJhbEluZm8iOnsicmVmZXJyYWxBcHAiOiJPbmVEcml2ZUZvckJ1c2luZXNzIiwicmVmZXJyYWxBcHBQbGF0Zm9ybSI6IldlYiIsInJlZmVycmFsTW9kZSI6InZpZXciLCJyZWZlcnJhbFZpZXciOiJNeUZpbGVzTGlua0NvcHkifX0&e=ukDTmy.
https://wpi0-my.sharepoint.com/:v:/g/personal/sporwal_wpi_edu/EWUrapCZrtFMtrffXN6ShnUBqILT4H-w0INbWhiYWIH7hw?nav=eyJyZWZlcnJhbEluZm8iOnsicmVmZXJyYWxBcHAiOiJPbmVEcml2ZUZvckJ1c2luZXNzIiwicmVmZXJyYWxBcHBQbGF0Zm9ybSI6IldlYiIsInJlZmVycmFsTW9kZSI6InZpZXciLCJyZWZlcnJhbFZpZXciOiJNeUZpbGVzTGlua0NvcHkifX0&e=xUdcCA
https://wpi0-my.sharepoint.com/:v:/g/personal/snatarajan1_wpi_edu/EQ6_DQ2PTAZEp45IIihPtBQBEFRp3he5f24amr1VSKJl0g?nav=eyJyZWZlcnJhbEluZm8iOnsicmVmZXJyYWxBcHAiOiJPbmVEcml2ZUZvckJ1c2luZXNzIiwicmVmZXJyYWxBcHBQbGF0Zm9ybSI6IldlYiIsInJlZmVycmFsTW9kZSI6InZpZXciLCJyZWZlcnJhbFZpZXciOiJNeUZpbGVzTGlua0NvcHkifX0&e=MUsz6d
https://wpi0-my.sharepoint.com/:v:/g/personal/aphadnis_wpi_edu/EQVc_bfvsCZMrMxeFC7hcIkBeYht0DBMknODwo_PXDOSMg?nav=eyJyZWZlcnJhbEluZm8iOnsicmVmZXJyYWxBcHAiOiJPbmVEcml2ZUZvckJ1c2luZXNzIiwicmVmZXJyYWxBcHBQbGF0Zm9ybSI6IldlYiIsInJlZmVycmFsTW9kZSI6InZpZXciLCJyZWZlcnJhbFZpZXciOiJNeUZpbGVzTGlua0NvcHkifX0&e=Q0inT1
https://wpi0-my.sharepoint.com/:u:/g/personal/sporwal_wpi_edu/EfTxqXJn81JCo-V3qQpxICUBUxnPOAJiJzWWAD-F3eKpLQ?e=tLx5oP

	LITERATURE REVIEW
	PROBLEM DEFINITION
	METHODOLOGY
	Static Environment Setup
	State and Action Representation
	DRL Algorithms
	Deep Q-Network (DQN) and Double DQN (DDQN)
	Proximal Policy Optimization (PPO)
	Deep Deterministic Policy Gradient (DDPG)
	Twin Delayed Deep Deterministic Policy Gradient (TD3)

	SIMULATION
	RESULTS
	Deep Q-Learning (DQN)
	Proximal Policy Optimization (PPO)
	DDPG
	TD3

	CONCLUSION
	References
	Appendix

